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A B S T R A C T

Processing-in-memory (PIM) techniques have gained much attention from computer architecture researchers,
and significant research effort has been invested in exploring and developing such techniques. Increasing the
research activity dedicated to improving PIM techniques will hopefully help deliver PIM’s promise to solve or
significantly reduce memory access bottleneck problems for memory-intensive applications. We also believe it
is imperative to track the advances made in PIM research to identify open challenges and enable the research
community to make informed decisions and adjust future research directions. In this survey, we analyze recent
studies that explored PIM techniques, summarize the advances made, compare recent PIM architectures, and
identify target application domains and suitable memory technologies. We also discuss proposals that address
unresolved issues of PIM designs (e.g., address translation/mapping of operands, workload analysis to identify
application segments that can be accelerated with PIM, OS/runtime support, and coherency issues that must
be resolved to incorporate PIM). We believe this work can serve as a useful reference for researchers exploring
PIM techniques.
. Introduction

Conventional Von-Neumann architectures have been the dominant
odel for computing systems across almost all domains. Such archi-

ectures have a separate memory device to provide data to computing
nits for processing and an I/O device to display the results. This
odel has been proven efficient, and much of today’s modern computer

rchitectures are entrenched to it.
However, with emerging applications, data movement to and from

emory has surfaced as an expensive operation in terms of time
nd energy [1]. This bottleneck occurs when applications require a
olume of data to be moved from memory to computing units at a
ate that cannot be sustained to provide optimum performance and
nergy efficiency, even with the deployment of highly efficient cache
emories. In simple terms, when an application is exceedingly memory

ound (e.g., due to last-level cache misses), the time and energy it takes
o fetch and move data from the memory to the computing unit is
ighly inefficient: transferring data from DRAM to the processing unit
hrough the cache hierarchy takes about two orders of magnitude more
nergy than performing a floating point operation on the processing
nit once the data has arrived [2]. Several factors exacerbate this issue:
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(1) conventional memory systems (i.e., DRAM) usually reside on a
DIMM connected to the processing units through a narrow bus, and
these connections are limited by a finite number of pins; (2) DRAM
modules operate at a significantly lower frequency than the processing
units; and (3) each application has very different memory requirements
and access patterns. Therefore, not all applications benefit from the
standard configurations.

To tackle these problems, several approaches have been adopted,
including introducing cache hierarchy and out-of-order processing to
mask the penalty incurred by memory accesses. New memory tech-
nologies and novel configurations are also being investigated. However,
these approaches are not keeping up with the exponential growth of
memory required by modern applications, and this has challenged the
conventional structure of computing systems.

Processing-in-memory (PIM) is one of the approaches that deviates
from the Von-Neumann architecture to bring computation into or near
the memory instead of transferring large amounts of data to and from
the computing unit [3]. The idea of PIM is not particularly new.
However, in recent years, a tremendous surge of research activity in
this field has resulted from the ever-increasing memory requirements
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Fig. 1. DRAM array [5].

of modern applications, which have driven researchers to consider
a paradigm shift to tackle the problem. Although PIM appears as a
generic term, it has several unique aspects and features. PIM can be
used at the cell level of the data array (i.e., simple operations), at
the sense amplifier/row-buffer level (i.e., more complex operations),
or by using simple cores near memory banks that can execute a subset
of CPU instructions (e.g., for processing a larger/memory-bound part
of the application). Additional design complexity occurs when these
different PIM approaches are realized by using various memory tech-
nologies (e.g., DRAM, high-bandwidth memory [HBM], hybrid mem-
ory cube [HMC], spin-transfer-torque magnetic RAM [STT-MRAM],
resistive RAM [ReRAM], phase change memory [PCM]). Among al-
ternative memory technologies, non-volatile SRAM designs have also
enabled in-memory computation [4]. Additionally, PIM units may need
to be designed for a specific application field for optimal perfor-
mance. For example, specific compute patterns of deep neural network
(DNN) applications may achieve maximum efficiency by performing
computations using the unique data-array structure of ReRAM.

Here, we analyze all the aforementioned aspects of recent studies
that evaluate PIM to understand how far the technique has advanced
and how it is evolving. We also describe different evaluation method-
ologies used by researchers to model PIM designs as well as the
challenges and opportunities that lie ahead in this endeavor.

2. Memory technologies

Because this article discusses PIM as it applies to a range of memory
technologies, we first briefly describe the design and organization of
the main memory technologies that frequently appear in research and
commercial designs.

2.1. DRAM

DRAM, or dynamic random access memory, is the most widely used
and implemented commodity memory technology for modern com-
puting systems. DRAM has been developed over decades of persistent
research and is the most affordable main memory technology.

DRAM memory systems comprise three main components: memory
controller, memory bus, and DRAM devices organized in dual-in-line
memory modules or DIMMs. Most modern CPUs have integrated mem-
ory controllers and memory channels connected to DRAM DIMMs
for transmitting data, commands, and addresses. DRAMs usually have
separate dedicated slots on the motherboard so that they can be easily
replaced or serviced.

DRAM stores data in cells, which are constituted by one transistor
nd one capacitor; the fully charged capacitor represents the logical
alue 1, and the discharged capacitor holds the logical value 0. These
2

Fig. 2. DRAM READ timing.

DRAM cells are connected through word-lines and bit-lines that form
an array structure (Fig. 1). When a row of this array is activated, it
brings the data of that array to the row buffer, and selected data can
then be transmitted to the CPU through the bus.

Because DRAM is the de-facto standard for main memory systems,
one must understand its commands and timing to appreciate the mod-
ifications and changes required for the emerging memory technologies
and protocols. To access data from DRAM, the specified row address
must be activated by issuing an ACT command, which brings the data to
the row buffer. Then, to carry a read operation, the memory controller
must issue a READ command to provide the column address on the row
that it needs to read. The data selected by these row/column addresses
are then placed on the data bus to be transmitted. DRAM read is self-
destructive, which means that once data is loaded into the row buffer,
it clears the data in the row; therefore, the data must be written back
to the row when the row is closed. A PRECHARGE operation is needed
to carry out this procedure. Fig. 2 shows the timing constraints (not to
scale) that DRAM must maintain between the commands that it issues.

DRAM memory technology is facing several challenges to remain
the dominant memory technology. Extreme scaling requires DRAM
capacitors to shrink so that more of them can fit within the same
space constraints, thereby making them increasingly vulnerable to
errors. Also, by having a planar layout, DRAM is constrained by the
limited number of physical pins and is unable to sustain the bandwidth
requirements of modern applications.

2.2. HBM

The 3D-stacked DRAMs were developed to accommodate the in-
creasing bandwidth demands of modern applications. HBM is a variant
of 3D-stacked DRAM, which stacks multiple DRAM dies on a base logic
layer [7]. Each DRAM die usually has two independent channels, each
of which can be divided into two pseudo-channels (HBM2). Multiple
HBM stacks can be connected to the processing unit while being on the
same silicon interposer, and this facilitates a 1024-bit connection to the
processing unit. Although HBM is essentially built on DRAM devices,
its unique organization and wider data connection enable it to achieve
much higher bandwidth and capacity when multiple stacks are used
(Fig. 3).

2.3. HMC

HMC is another DRAM derivative that adopts 3D-stacking of DRAM
dies [8]. Unlike HBM, each DRAM die in HMC is distributed in par-
titions that are vertically connected with other partitions of adjacent
dies, thereby forming a vault, which is controlled by a memory con-
troller that resides in the logic base layer (Fig. 4). Vault controllers
are connected to other HMCs or host devices through a packet-based
communication protocol, which is implemented with a high-speed
serialization/de-serialization circuit.

2.4. STT-MRAM

STT-MRAM is an emerging non-volatile memory technology based
on the magneto-resistance caused by spin-polarized current [10]. The
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Fig. 3. (a) General organization of HBM stacks with a processing unit. (b) Per-channel data/bus connections with processing unit via interconnect circuitry (e.g., memory controller).
(c) Internal structure of a 4-die HBM stack with arrangements of banks for pseudo channel mode (Channel 6) and legacy mode (Channel 7) [6].
Fig. 4. HMC or hybrid memory cube [9].

torage and programmability of STT-MRAM revolve around a magnetic
unneling junction (MTJ), which is composed of a thin tunneling dielec-
ric layer sandwiched between two ferromagnetic layers. One of these
ayers has a fixed magnetization, and the other layer can be changed
y passing a large amount of current through it. When both layers have
he same polarity, then the MTJ exerts low resistance, which represents
ogical 0. On the other hand, when the layers have different polarities,
he MJT represents a high-resistance state and a logical 1. As shown in
ig. 5, STT-MRAM’s cell array structure can be very similar to that of
RAM [5].

.5. Reram

ReRAM is another non-volatile memory technology that could be
dopted as an alternative. A ReRAM cell is a two-terminal device
ith a metal–insulator–metal structure. These cells can establish a low-

esistance state or a high-resistance state by creating or dissolving a
onductive filament that works as the metal oxide insulator. Three
ain operations can be performed with ReRAM cells: SET, RESET,

and READ. The SET operation invokes the low-resistance state, and the
RESET operation transforms the cell from the low-resistance state to a
high-resistance state. A READ operation detects the current resistance
tate of the cell by applying a small sensing voltage that does not
hange the cell’s resistance [11].
3

Fig. 5. A cell array of STT-MRAM or spin-transfer-torque magnetic RAM [5].

2.6. PCM

PCM is another emerging non-volatile memory that has garnered
considerable attention as an alternative memory technology. A PCM
cell has two electrodes separated by a phase-change substance (e.g.,
chalcogenide material such as Ge2Sb2Te5). These substances can have
two distinct electrical resistance properties (i.e., crystalline or amor-
phous), which indicates it could be an ideal candidate for a memory
technology. Like ReRAM, PCM cells also have three main operations:
SET (to 1), RESET (to 0), and READ [12]. Although READ and RE-
SET operations on PCM are relatively fast, the SET operation is very
slow, thereby making PCM an unlikely candidate as the main memory
technology for a high-performance computing system. Additionally, the
low endurance of PCM cells means it may not be a practical choice for
enterprise systems.

3. In-depth analysis of PIM literature

There has been a tremendous surge of investigations of different
variants of PIM. In this section, we present an analysis of recent
studies in this field. We organize our evaluation of PIM studies into
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four categories: design type, application field, memory technology, and
evaluation methodology.

3.1. PIM by design type

In this section, we discuss the three main types of PIM designs,
which are classified by where the processing takes place in memory.

3.1.1. Processing at the Data Array (DA)
Some studies propose adopting compute capabilities in the data-

array level [13–21]. Generally, these studies explore and investigate
the possibilities of leveraging the cell-level structures to introduce some
computing capabilities.

Sun et al. [13] propose a coprocessor based on STT-MRAM for con-
volutional neural network (CNN) acceleration. The authors also report
implementing an advanced technology node of 22 nm on CMOS, SRAM,
and STT-MRAM. The proposed CNN processing block simultaneously
performs 3 × 3 convolution on a 2D image at 𝑃 × 𝑃 pixel locations by
using input from the input buffer and filter coefficients from colocated
on-chip MRAM memory.

Imani et al. [14] exploit the analog characteristics of the con-
ventional crossbar memory to enable essential operations in memory.
Unlike previous efforts that compute bit-wise operations on the sense
amplifier of each memory block, this work supports bit-wise operations
internally in memory without reading the values out of the block.
The authors report adopting row-parallel computation, achieving 1000
parallel addition/multiplication on memory with 1000 rows.

Leitersdorf et al. [15] propose to speed up in-memory multiplication
by using novel, partition-based computation techniques for broadcast-
ing/shifting data among partitions along with replacing the Wallace
tree with a carry-save-add-shift (CSAS) multiplier and introducing a
novel full-adder design. This study also exploits a unique ReRAM
(memristive crossbar) feature: voltage-controlled variable resistance to
support logic gates (e.g., NOT, NOR, OR, NAND). Peng et al. [16]
propose a novel mapping method and dataflow to maximize the reuse
of weight and input data on an 8-bit ReRAM-based PIM architecture.
The concept is simulated with NeuroSim simulator [22], and the results
suggest that the proposed techniques save 90% latency and 68% energy
in interconnect and buffers on the ResNet-34 benchmark.

Long et al. [17] present another ReRAM-based PIM architecture
specifically for recurrent neural network (RNN) acceleration (Fig. 6).
The authors propose an in-memory processing unit with three main
subarrays: crossbar subarrays for matrix–vector multiplication, special
function units for nonlinear functions, and multiplier subarrays for
element-wise operations. Reportedly, the proposed techniques result in
a 79× improvement on average over the GPU baseline.

Lu et al. [18] explore reconfigurable design methodologies for
compute in memory (CIM)–based accelerator to support CNNs running
on prefabricated chips. Authors evaluate the concept with a modi-
fied DNN + NeuroSim framework running a system-level performance
benchmark.

Kazemi et al. [20] introduce multibit in-memory hyperdimensional
computing (HDC) inference that supports multibit operations that use
ferroelectric field effect transistor (FeFET) crossbar arrays for multiply-
and-add and FeFET multibit content addressable memories for associa-
tive search.

3.1.2. Processing at the row buffer
Few studies propose low-level techniques to enable processing ca-

pability in or around the row buffer or sense amplifiers.
Roy et al. [23] propose a novel multiplication scheme inside DRAM

at the subarray level with negligible changes to the DRAM subarrays.
Because the multiplication is performed by addition and AND opera-
tions, the study proposes a fast, lightweight, bit-wise, and in-subarray
AND operation in DRAM to reduce the overall multiplication cost.
They incorporate a novel PIM-DRAM bank architecture depicted in
4

Fig. 6. PIM architecture and ReRAM crossbar for matrix–vector multiplication
proposed by Long et al. [17].

Fig. 7. PIM-DRAM bank architecture proposed by Roy et al. [23].

Fig. 7, including adder trees and nonlinear activation function units
in each DRAM bank for efficient machine learning (ML) acceleration.
The proposed architecture supports the ReLU, batch-normalization, and
pooling operations needed for a wide range of ML models. The pro-
posed PIM operations include a bit-wise AND operation that dedicates
two extra rows in the DRAM subarray, and in-DRAM multiplication
is broken down into AND and ADD operations that use nine compute
rows. In the proposed data mapping, every DNN layer is allocated to a
DRAM bank. In the mapping algorithm, the outermost loop runs across
all layers in the neural network.

Long et al. [24] present a FeFET-based PIM architecture to accel-
erate the inference of DNNs. This work proposes a digital in-memory
vector–matrix multiplication engine design that uses the FeFET cross-
bar to enable bit-parallel computation and eliminate analog-to-digital
conversion in prior mixed-signal PIM designs. A dedicated hierarchical
network-on-chip is developed for input broadcasting and on-the-fly
partial results processing, thereby reducing the data transmission vol-
ume and latency. Simulations of a 28 nm CMOS technology show
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Fig. 8. Overall architecture proposed by Park et al. [32]. (a) Neural network acceler-
ator on the HBM logic die. (b) Neural network engine with the data-fetching scheme
proposed in the study.

115× higher computing efficiency (gigaflops/W) over a desktop GPU
(NVIDIA GTX 1080 Ti) and 6.3× higher computing efficiency over a
ReRAM-based design.

Lee et al. [25] present an HBM2-based experimental design that
includes 16-cycle MAC (multiply-and-accumulate) units and 8-cycle
reducers for matrix–vector multiplication. The study reports having
achieved 406% and 35.2% performance improvement for all bank
and per-bank scheduling, respectively. Several other studies propose
innovative PIM techniques to accelerate neural networks [26–28].

3.1.3. Processing in a unit near memory banks
The majority of the studies that we analyze propose a near-memory

compute unit that implements a simple core to execute a subset of
CPU instructions to reduce memory traffic to and from the processing
unit [1,2,29–48].

Olgun et al. [29] argue that some processing-using-memory (PuM)
mechanisms require special memory allocation and alignment schemes
that are not provided by the existing memory allocation primitives.
Also, in-DRAM copy operations require efficient handling of memory
coherence, and this makes it difficult to analyze PuM techniques on pro-
prietary computing systems or simulators. To tackle the issue, the study
develops a field-programmable gate array (FPGA)-based prototype to
demonstrate end-to-end integration and evaluation of PuM mechanisms
using real DRAM chips. To that end, the proposal incorporates two
hardware components: a PuM operations controller that works between
the application and the memory controller as a memory-mapped mod-
ule to provide instruction set architecture (ISA)-transparent control
of PuM techniques, and the custom memory controller that provides
refresh, scheduling, and timing used for DDRx sequences that trigger
PuM operations. Software components include the PuM operations
library (pumolib), which exposes PuM operations to the application
developer, and a custom supervisor software that provides necessary
OS primitives (i.e., virtual memory management, memory allocation,
and alignment).

Park et al. [32] discuss the high-performance, near-memory neural
network accelerator architecture that uses the logic die in 3D HBM-like
memory (Fig. 8). Because most of the previously reported 3D memory-
based, near-memory neural network accelerator designs used HMC
memory, the first focus was to identify the key differences between
HBM and HMC in terms of near-memory neural network accelerator
design. The study introduces the round-robin data fetching and group-
wise broadcast schemes to exploit the centralized through-silicon-via
(TSV) channels. The article shows that an efficient scheme designed
5

to fetch data from the DRAM dies to the neural network accelerator
on the logic die in HBM is different from an efficient data-fetching
scheme for neural network accelerators in HMC. To be more exact,
the bottom buffer die of current generation HBM is implemented in
a DRAM process. Because a logic process is needed to implement a
high-performance neural network accelerator, it is assumed that the
bottom die of HBM is implemented in the logic process in this study.
Authors propose (1) for the data movement from DRAM stacks to
neural network engines on the logic die in HBM, the round-robin
fashion of data fetching is more efficient than the conventional dis-
tributed data fetching, and (2) with conventional architectures using
a multicast scheme, increasing the bit width leads to a huge routing
overhead of connecting wide I/Os to all processing elements. On the
contrary, by using a group-wise broadcast scheme with predetermined
and grouped interconnects, the proposed architecture can remove the
routing overhead.

Kwon et al. [33] demonstrate that as the models and the datasets
used to train deep learning models scale, the system architects are faced
with new challenges, one of which is the memory capacity bottleneck,
at which the limited physical memory inside the accelerator device
constrains the algorithm that can be studied. The study proposes a
memory-centric deep learning system that can transparently expand
the memory capacity available to the accelerators while also providing
fast interdevice communication for parallel training. This proposal
aggregates a pool of memory modules locally within the device-side
interconnect, and these modules are decoupled from the host interface
and function as a vehicle for transparent memory capacity expansion.
Compared with conventional systems, this technique achieves an aver-
age speedup of 2.8× on eight deep learning applications and increases
the system-wide memory capacity to tens of TBs.

Lee et al. [2] propose an innovative PIM architecture that can
seamlessly work with unmodified commercial processors as a clean
replacement for standard DRAM. To demonstrate its feasibility and
efficiency at the system level, the authors proposed a PIM architecture
based on a commercial HBM2 DRAM die design fabricated with a
20 nm DRAM technology, integrated the fabricated PIM-HBM with
an unmodified commercial processor, and developed the necessary
software stack. The PIM architecture consists of (1) a PIM-HBM DRAM
die; (2) a bank coupled with a PIM execution unit comprising a single
instruction multiple data (SIMD) floating-point unit (FPU), command
register file (CRF), general register file (GRF), and a scalar register file
(SRF); and (c) the data path of the PIM execution unit (Fig. 9). In PIM
mode, PIM execution units across all the banks concurrently respond to
a standard DRAM column command (e.g., READ or WRITE) from the
host processor, executing one wide-SIMD operation commanded by a
PIM instruction with deterministic latency in a lock-step manner. A PIM
execution unit consists of three components: (1) a 16-wide SIMD FPU,
(2) register files, and (3) a controller (Fig. 10). The PIM execution unit
is divided into up to five pipeline stages to satisfy the DRAM internal
timing for reading/writing data. The first stage fetches and decodes a
PIM instruction. The second stage loads 256-bit data from the EVEN
BANK or the ODD BANK to either a GRF or an input of the SIMD FPU.
The third stage is MULT, and the fourth stage is ADD. That is, the MAC
goes through both the third and fourth stages, whereas MULT skips the
fourth stage, and ADD skips the third stage. The last stage writes the
result to a GRF.

Ghose et al. [35] examine three key domains for the practical
construction and widespread adoption of PIM architectures. First, they
describe their work on systematically identifying opportunities for PIM
in real applications and quantify potential gains for popular emerging
applications (e.g., ML, data analytics, genome analysis). Second, they
aim to solve several key issues in programming these applications
for PIM architectures. Third, they describe challenges that remain for
the widespread adoption of PIM. A function is a PIM target candi-
date in a consumer device if it meets the following conditions: (1) it
consumes the most energy out of all functions in the workload, as
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Fig. 10. Proposed microarchitecture of PIM execution unit with control, register, and
ingle instruction multiple data (SIMD) units [2].

nergy reduction is a primary objective in consumer workloads; (2) its
ata movement consumes a significant fraction (i.e., >20%) of the

total workload energy to maximize the potential energy benefits of
offloading to PIM; (3) it is memory-intensive (i.e., its last-level cache
misses per kilo instruction [MPKI] is >10), as the energy savings of
PIM is higher when more data movement is eliminated; and (4) data
movement is the single largest component of the function’s energy
consumption. The study identifies four key issues that affect the pro-
grammability of PIM architectures: (1) the different granularities of an
offloaded PIM kernel, (2) how to handle data sharing between PIM ker-
nels and CPU threads, (3) how to efficiently provide PIM kernels with
access to essential virtual memory address translation mechanisms, and
(4) how to automate the identification and offloading of PIM targets
(i.e., portions of an application that are suitable for PIM).

Several papers propose near-memory processing techniques for ac-
celerating neural networks [32,36,37], and Huang et al. [44] aim
to achieve energy-efficient graph processing with heterogeneous PIM
hardware/software co-design.

3.2. PIM by application field

Recent PIM studies focus on attempts to use PIM to accelerate ap-
plication segments in ML, AI, and neural network domains [13,16–18,
23,24,26–28,31–34,36,37]. Because applications from these domains
frequently use matrix–vector multiplication operations, the coefficients
can be naturally mapped to the word lines and bit lines and use
the data array to compute the dot product in each cell and then
eventually accumulate them along the source lines [16,17]. In another
approach, some studies use the logic die of 3D-stacked memory to
place processing elements directly beneath the DRAM dies with a
shorter distance to the coefficient data for faster computation in each
layer [32,37]. Imani et al. [14] reportedly achieved graph processing
and query processing capabilities along with ML acceleration with PIM.
Huang et al. [44] propose a heterogeneous PIM design that incorpo-
rates memristors and CMOS-based technologies to accommodate the
heterogeneity requirements of graph applications.

3.3. PIM by memory technology

There are some interesting observations when using particular
memory technologies in certain PIM designs. Most of the studies
6

Fig. 11. PIMCaffe system architecture proposed by Jeon et al. [34].

hat propose processing in a DA use emerging non-volatile memory
e.g., ReRAM) because the data-array structure of this memory is
articularly suitable for such implementations [13–15,21,25,41,44]. On
he other hand, work that builds on the idea of having a processing
nit near memory mainly opts for 3D-stacked memories (e.g., HBM,
MC) to leverage the additional logic layer [2,32,42,45,46,48,49].
ew studies propose PIM optimizations on commodity DRAM tech-
ology [23,28–30,34,38,39], and three studies focus their designs on
PMEM, which is a commercially developed DRAM-based DIMM with

n built-in compute capability [1,40,50].

.4. PIM by evaluation methodology

Researchers are adopting various methodologies to design and test
IM techniques. We categorize these methodologies in three segments:
nalytical models, simulation models, and hardware implementations.

.4.1. Analytical model
A theoretical model was proposed for the design and analysis

f PIM-based parallel algorithms [51]. The proposed model com-
ines the CPU side of parallel cores with fast access to a shared
emory and a PIM side that consists of local memory and a pro-

essor core. It also proposes standard parallel complexity metrics
or both shared memory and distributed memory computing. The
roposed model is evaluated for a skip-list algorithm with seven op-
rations: GET(key), Update(key, value), Delete(key), Pre-
ecessor(key), Successor(key), Upsert(key, value), and

RangeOperation(lkey, rkey, function).

3.4.2. Simulation model
Simulators played a vital role in evaluating and boosting the re-

search for PIM-based systems because no real commercially available
PIM hardware is available to the researchers.

Ghose et al. [30] use a GEM5 full-system simulator with DRAMSim2

to evaluate the efficient in-memory accelerator for pointer chasing,



K. Asifuzzaman, N.R. Miniskar, A.R. Young et al. Memories - Materials, Devices, Circuits and Systems 4 (2023) 100022

w

w
r
f
c
s

C
t
t
s
R
s
s

p
c
s
s
m
c

o
u
t
c
s
a

3

a
d
m

a
m
o

Fig. 12. Architecture and organization of an UPMEM-based PIM system [1].
3
G
=
G
C
=
X

which can handle address translation entirely within DRAM. DRAM-
Sim2 provides accurate memory modeling and DRAM energy analysis.

Roy et al. [23] propose a DRAM-based PIM multiplication primitive
to accelerate matrix–vector operations in ML workloads and evaluated
DNNs by using these operations on HSPICE circuit simulations. How-
ever, it is not clear how the analog circuit simulator is used for these
experiments.

Zhou et al. [19] propose a full-stack simulation infrastructure to ex-
plore the design space of digital PIM. This infrastructure incorporates a
software library, a configurable compiler layer, and a fast and accurate
PIM-enabled architecture model. Authors claim that the proposed sim-
ulator provides 10.3× faster simulation with 6.3% deviation compared

ith a validated simulator.
Xu et al. [52] present PIMSIM (processing-in-memory simulator),

hich is equipped with a partitioner at the front end capable of
ecognizing and distributing PIM instructions. It also provides dynamic
eedback support to determine if a PIM instruction should be exe-
uted in memory. The simulator supports three simulation modes: fast
imulation, instrument-driven simulation, and full system simulation.

Lu et al. [22] develop and present the NeuroSim simulator for
IM hardware simulation. NeuroSim can estimate statistics related to
he area, latency, dynamic energy, and leakage power consumption of
he hardware performance. The simulator is validated against actual
ilicon data from a 40 nm 16 kb CIM macro that uses TSMC’s 40 nm
RAM process, whereas the peripheral circuit modules (e.g., decoders,
witch matrix, MUX [multiplexer], adders) are validated with SPICE
imulations.

Xie el al. [53] propose MPU-Sim for general-purpose near-bank
rocessing architectures to model several MPU cores inside a processor
onnected through on-chip network links. Each MPU core includes
everal near-bank processing units on DRAM dies. MPU-Sim provides
upport for the SIMT (single instruction, multiple threads) program-
ing model to exploit massive bank-level parallelism and address the

hallenge of control logic and communication overheads.
MultiPim [54] and DAMOV [55] are simulation infrastructures built

n ZSim [56] (a system simulator) and Ramulator [57] (a memory sim-
lator). Both simulators support offloading kernels to PIM units. Mul-
iPim employs a multistack interconnect, crossbar switches, PIM core
oherence, and virtual memory, whereas DAMOV performs an exten-
ive workload characterization to identify data-movement bottlenecks
cross a range of applications and functions.

.4.3. Hardware implementations
Jaio et al. [31] propose a chiplet-based PIM design strategy evalu-

ted with a Tiny-Yolo DNN running on an FPGA. However, the FPGA’s
etails are not provided. The proposed layer-wise method partitions a
onolithic accelerator’s workload to a multichiplet pipeline.

PimCaffe [34] develops a PIM-emulating FPGA platform with SIMD
nd systolic array computing engines that can perform vector and
atrix multiplication on the PIM device. A high-level block diagram

f the proposed design in shown in Fig. 11.
 s
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Samsung [2] proposes an industrial PIM prototype fabricated with a
20 nm DRAM process. This PIM execution unit consists of sixteen 16-bit
SIMD lanes, each with an floating-point (FP) adder, FP multiplier, 32-
entry command register, 16-entry general register, and 16-entry scalar
registers.

UPMEM [1] is another PIM-based technology in commercial pro-
duction. Fig. 12 shows an UPMEM based PIM system with a host CPU,
standard DRAM main memory, and PIM-enabled main memory. An
UPMEM module is based on a standard DDR4 DIMM with several PIM
chips. Each PIM chip consists of 8 DRAM processing units (DPUs), and
each DPU has access to a 64 MB DRAM bank, 24 KB of instruction
memory, and 64 KB of scratchpad memory. The 64 MB DRAM banks are
accessible by the host CPU for copying input data from main memory
and retrieving results.

Table 1 presents a summary of our survey and provides a high-
level view of the application domain, publication year, PIM category,
memory technology used, evaluation methodology, and discussions of
several other issues relevant to PIM implementation.1

4. Challanges

Through the literature review, we identify the areas that should be
further developed to ensure PIM can be adopted as a standalone and
efficient solution. Most of the studies surveyed focus on only a part of
the PIM implementation, thereby leaving crucial questions unanswered.

No matter how intriguing PIM sounds, it comes with a range of
challenges across the implementation framework. These challenges
must be addressed before PIM can be adopted as a universal alternative
or complement to traditional memory technologies. PIM is expected to
accelerate certain memory-bound tasks, but much of the computation
will still be executed on the CPU. Therefore, overhead costs will still
apply for classifying tasks for the PIM execution unit or for the main
processing unit. Also, the execution units in/near memory are supposed
to be a simple core that supports limited instructions, and they are
unable to execute programs that use a variety of instructions. To
efficiently allocate application portions to be processed in memory,
runtime and OS support is needed. Furthermore, significant changes in
memory controller design would be warranted. Therefore, we classify
the main challenges of adopting PIM as workload analysis and clas-
sification, address translation and mapping, OS and runtime support,
compiler and programming models, and coherency and consistency.
These issues are explored in more detail below.

1 DA = data array, RB = row buffer, NM = near memory, DR3 = DDR3,
DR4 = DDR4, MRM = MRAM, UPM = UPMEM, ReR = ReRAM, HBM = HBM,
D = 3D-stacked memory, PCM = PCM, FFT = FeFET, HMC = HMC, GE5 =
em5, SPC = SPICE, CAC = CACTI, INH = in-house, CF3 = Caffe3, DS2/3
DramSim2/3, RML = Ramulator, NRO = NeuroSim, PIN = Pin, GGU =

PGPUSim, SYN = Synopsys, RSV = RISC V, x86 = x86, NVD = NVIDIA, CDA =
UDA, CNN = convolutional neural network, DNN = deep neural network, NN
neural network, DL = deep learning, BData = big data, AQUAB = Aquabolt-

L, BNN = binarized neural network, OFFLD = offloading technique, SIM =
imulator study, and HDC = hyperdimensional computing.
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Table 1
A summary of the survey to provide a high-level view of the application domain (if specified), publication year, PIM category,
memory technology used, evaluation methodology, and discussions of several other issues relevant to PIM implementation. Green
highlights indicate detailed discussions, and yellow highlights indicate limited discussions.
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[29] Olgun et al. 2021 NM DR3
[30] Ghose et al. 2018 NM DR3 GE5
[13] CNN Baohua et al. 2018 DA MRM
[23] DNN Anand R et al. 2021 RB DR3 SPC
[1] GomezLuna et al. 2021 NM UPM
[14] BData Rosing et al. 2019 DA ReR
[31] DL Jiao et al. 2021 NM
[32] CNN KIM et al. 2021 NM HBM CAC
[24] DNN Long et al. 2019 RB
[33] DL Kwon et al. 2018 NM INH
[2] AQUAB S. Lee et al. 2021 NM HBM
[15] PIM Kvatinsky et al. 2021 DA ReR
[26] NN Gupta et al. 2018 RB SYN
[16] CNN Peng et al. 2020 DA
[34] ML Won et al. 2021 NM DR3
[35] Ghose et al. 2019 NM
[27] CNN Roohi et al. 2019 RB
[36] NN Liu et al. 2018 NM SYN
[17] RNN Long et al. 2018 DA
[37] CNN Wang et al. 2018 NM CF3
[38] REC Ke et al. 2020 NM DR3
[39] GCN Zhou et al. 2021 NM DR4 DS3
[40] Nider et al. 2021 NM UPM
[49] Xie et al. 2020 RB 3D RML
[41] Nader et al. 2021 NM PCM GE5
[18] CNN Lu et al. 2021 DA FFT NRO
[42] Ahn et al. 2015 NM HMC PIN
[28] BNN Lin et al. 2021 RB DRM GE5 RSV
[43] Boroumand et al. 2019 NM HMC GE5 x86
[44] Graph Huang et al. 2020 NM ReR DS3
[45] OFFLD Pattnaik et al. 2016 NM 3D GGU NVD
[46] Zhang et al. 2020 NM HBM RSV
[48] Drumond et al. 2017 NM HMC FLX
[25] LEE et al. 2019 RB HBM DR2
[19] SIM Zhou et al. 2021 DA ReR
[20] HDC Kazemi et al. 2021 DA FFT INH
[52] SIM XU et al. 2019 NM ALL
[21] Jung et al. 2022 DA MRM
[22] Lu et al. 2021 DA ReR
[50] Ginnoula et al. 2022 NM UPM
[54] SIM Yu et al. 2021 NM HMC
[55] SIM Oliveira et al. 2021 NM HMC
4.1. Workload analysis and classification

To better understand the potential use and expected acceleration
of PIM execution, we must understand and characterize the candidate
applications and functions. Generally, application segments that suffer
from the poor locality and have higher last-level cache misses are good
candidates for PIM. Oliveira et al. [55] present a detailed methodology
for workload characterization in which the authors classify candidate
functions in six categories based on various combinations of temporal
locality, arithmetic intensity, last-to-first-level cache miss ratio (LFMR),
and MPKI to determine if they are good candidates to be executed on
a processing unit near memory. The study determines that such an
approach can be beneficial for five categories except for the one in
which functions demonstrate high temporal locality, low LFMR, and
high arithmetic intensity.

4.2. Address translation and mapping

Deploying PIM techniques requires revising the mapping and ad-
dress translation process of conventional memory systems. Olgun et al.
8

[29] argue that data mapping and allocation requirements must be
augmented to satisfy PIM techniques. The authors identify that in their
PIM design, source and destination operands of COPY should reside
in the same DRAM subarray, referring to it as a mapping problem and
proposing a custom supervisor software to handle it. Lee et al. [2]
avoid the overhead of virtual–physical address translation by reserving
memory space for PIM operations during the booting process. They also
set this reserved memory space in an uncacheable region, so when the
host processor sends a DRAM command for memory access to the PIM
memory space, the PIM device driver allocates physically contiguous
memory blocks.

4.3. OS and runtime support

PIM incorporation requires OS and runtime support to ensure cor-
rect and efficient functionality of the modified memory controller
required for PIM [46]. Ahn et al. [42] propose a simplified hardware
structure that oversees the locality of data accessed by PIM-enabled in-
structions at runtime to determine if the instruction should be executed
on the host processor instead of the PIM unit. Wang et al. [37] observe
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that, for the deterministic behavior of convolutional connections, a
runtime based approach can determine the mapping of parallelism onto
the corresponding hardware. Gómez-Luna et al. [1] use the UPMEM
runtime library to handle library calls to move instructions among dif-
ferent memories (e.g., MRAM, IRAM) within PIM units. TUPIM [58] can
extract PIM-friendly instructions automatically and offload them to the
memory at runtime. TUPIM selects PIM-friendly instructions that (1)
reduce intermediate data movements between on-chip caches and main
memories, (2) are not well served by the caches, and (3) are repeatedly
executed. The study reports that the proposed enhancements achieve
2.2× speedup on average with a 15.7% energy reduction compared with
CPU-only execution.

4.4. Compiler and programming models

Olgun et al. [29] reportedly modify the RISC-V GNU compiler tool
chain to expose a special instruction, CFLUSH, to C/C++ applications.
CFLUSH is used to flush physically addressed dirty cache blocks to
maintain coherence. Ghose et al. [30] propose offloading portions of
the code to PIM cores by using two macros: #PIM_begin and #PIM_end.
The compiler converts these macros to the instruction added to the ISA
to trigger and end PIM execution.

4.5. Coherency and consistency

Olgun et al. [29] identify coherence management as a challenge
for PIM. Conventional systems deploy caches to keep copies of data in
the main memory for fast access to frequently used data. The STORE
operation updates the cache data, but the main memory data is not
immediately updated, and this becomes challenging for PIM. As men-
tioned, the authors implement a new custom RISCV instruction called
CFLUSH to flush physically addressed dirty cache blocks, thereby solv-
ing the memory coherence problem in a minimally invasive manner.
Ghose et al. [30] propose the LazyPIM mechanism to maintain cache
coherence between PIM processing logic and CPU cores without having
to send coherence requests for every memory access. Instead, PIM
processing logic speculatively acquires coherence permissions and later
sends batched coherence look-ups to the processing unit to ascertain
if its speculative permission acquisition violated the memory ordering
defined by the programming model. Ahn et al. [42] invoke back-
invalidation and back-write-back for the requested cache blocks to the
last-level cache before sending the PIM operation to memory. This
technique prevents having a stale copy of the data in on-chip caches
or in main memory before or after a PIM operation. CuckooPIM [59]
proposes a new, variable-grained coherence scheme that dynamically
monitors system behavior and strategically grants data ownership. It
does not induce notable combinational logic complexity to a PIM
system.

5. Previous surveys of PIM

Gagandeep et al. [60] provide a detailed review of near-memory
computing architectures with a focus on processing at the data’s loca-
tion, which can mitigate the data movement problem for data-intensive
operations. Surveying the literature up to 2018, the authors analyze an
extensive body of work on the limited aspects of the memory level at
which this paradigm is applied and the granularity of applications for
near-memory computing units. The paper limits its analysis to near-
memory computing and excludes CIM analysis. Authors classify the
state-of-the-art of near-memory computing literature into five broad
categories: memory, processing, evaluation technique, interoperability,
and target application domain. They also consider different memory
properties: hierarchy, memory type, and integration. In the processing
category, the authors consider different types of host compute units
(e.g., CPU, GPU, CGRA, FPGA, accelerator), implementation of near-
memory compute logic (e.g., programmable, fixed function, reconfig-

urable), and granularity (e.g., instruction level, kernel level, application
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level). In the evaluation category, the authors separate the literature
into analytic, simulation, and prototype/hardware. In interoperability,
the authors consider programmable interface support, cache coherence
mechanism, and virtual memory support. Authors also survey literature
on design space exploration for near-memory systems to understand
and evaluate their space. Literature on both microarchitecture depen-
dent [61] and independent [62–64] workload characterization based
design space exploration approaches are also considered. The literature
also reveals evaluation methods used in state-of-the-art papers, such
as analytical modeling-based approaches [65,66] and simulation-based
modeling approaches [67–70]. The case study compares a CPU-centric
multicore system that uses DDR3 as the main memory (traditional)
against a data-centric approach that uses HMC-like 3D-stacked memory
instead of DDR3. The authors conclude that applications with low local-
ity should leverage the near-memory approach, whereas high locality
applications can benefit more from the traditional approach.

Li et al. [71] summarize progress in the development of in-memory
processing for three mainstream eNVM technologies: STT-MRAM, PCM,
and ReRAM. The authors classify the studies by memory type, loca-
tion in the memory hierarchy, design level (i.e., device, circuit, or
system), function type (i.e., logic, arithmetic, associative, vector, or
matrix–vector multiplication), and application group.

Yu et al. [72] also describe studies that explore CIM with emerging
non-volatile memories. The authors particularly focus on prototype
chips that monolithically integrate eNVMs with CMOS periphery for
deep learning. The study describes an RRAM CIM macro [73] and
explains how low on-state resistance of most eNVM technologies may
affect analog read out accuracy. Also, the analog MUX at the column
end must be significantly sized up to avoid voltage drop. Additional
technical challenges come with the write voltage requirements, which
are higher for eNVMs such as RRAM and PCM.

Mittal et al. [74] focus their survey on spintronic architectures
for PIM to target neural network processing. The authors identify the
type of spintronic technologies used, the organization of the proposed
PIM accelerator designs, and PIM operations supported by these de-
vices. The study concludes that neither conventional memories and
compute-centric architectures nor spintronic memories can meet the
grand challenges of AI.

Our study complements previous survey papers with the latest ad-
vancements and developments of memory technologies and techniques
by uniquely classifying the studies by PIM category, application fields,
memory technology, and evaluation models and discussing unresolved
challenges on the path forward.

6. Conclusions

In this survey, we summarize the recent advances in PIM. To that
end, we introduce technologies that PIM techniques generally build on
and analyze research articles, technical papers, and industrial product
details to understand how PIM techniques have advanced as of this
writing. We describe the prevalent PIM architectures proposed by the
community, the application domains that benefit from PIM operations,
and the evaluation methodologies used to conduct PIM experiments.
We also discuss strategies to mitigate key challenges for implement-
ing PIM techniques, including address translation and mapping of
operands, workload analysis to identify application segments that can
be accelerated with PIM, OS and runtime support needed to incorporate
PIM, and coherency issues for PIM. We believe this survey will serve as
a useful reference for future studies that explore PIM techniques.
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