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Abstract—Processing-in-memory (PIM) has emerged as a
promising solution for accelerating memory-intensive workloads
as they provide high memory bandwidth to the processing units.
This approach has drawn attention not only from the academic
community but also from the industry, leading to the development
of real-world commercial PIM devices. In this work, we first
conduct an in-depth characterization on UPMEM’s general-
purpose PIM system and analyze the bottlenecks caused by the
data transfers across the DRAM and PIM address space. Our
characterization study reveals several critical challenges associ-
ated with DRAM↔PIM data transfers in memory bus integrated
PIM systems, for instance, its high CPU core utilization, high
power consumption, and low read/write throughput for both
DRAM and PIM. Driven by our key findings, we introduce
the PIM-MMU architecture which is a hardware/software co-
design that enables energy-efficient DRAM↔PIM transfers for
PIM systems. PIM-MMU synergistically combines a hardware-
based data copy engine, a PIM-optimized memory scheduler,
and a heterogeneity-aware memory mapping function, the uti-
lization of which is supported by our PIM-MMU software
stack, significantly improving the efficiency of DRAM↔PIM data
transfers. Experimental results show that PIM-MMU improves
the DRAM↔PIM data transfer throughput by an average 4.1×
and enhances its energy-efficiency by 4.1×, leading to a 2.2×
end-to-end speedup for real-world PIM workloads.

Index Terms—Processing-in-memory; near-memory process-
ing; parallel architecture

I. INTRODUCTION

Modern data-intensive workloads (e.g., AI inference tasks
for large language models [10], [17], [40], [47], [48], [92],
[97], [114], recommendation systems [63], [72], [73], [86], and
graph processing [2], [19], [35], [113], [117]) are memory-
bound as they pose unprecedented demand for large data.
Despite the increasing demand for high memory bandwidth,
integrating a larger number of DRAM I/O pins at the processor
die is challenging because of form factor constraints and issues
related to signal integrity [67].

To address such limitation, processing-in-memory (PIM)
architectures gained interest by integrating compute logic close
to DRAM. Because of its potential to alleviate the memory
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bandwidth bottleneck modern processors face, PIM has been
extensively explored in both academia [2], [3], [8], [9], [15],
[23], [24], [28], [29], [34], [45], [49], [50], [66], [78], [90],
[91], [93], [103], [104], [110] and industry with several real-
world PIM integrated systems introduced to the market [22],
[70], [77], [95]. These PIM designs can be classified into two
categories: (1) PIM integrated at the I/O bus (e.g., Samsung
CXL-PNM [95] and SK Hynix AiMX [70]), and (2) PIM
integrated at the host processor’s memory bus (e.g. UPMEM-
PIM integrated with the CPU [22]). In this work, we focus
on the system-level challenges associated with memory bus
integrated PIM architectures employing a bank-level PIM core
design (i.e., each memory bank contains a single PIM core) as
they represent a state-of-the-art, commercially available PIM
architecture, i.e., UPMEM-PIM [22].

An important property memory bus integrated PIM com-
monly exhibits is its need to separate the address space of
DRAM vs. PIM (Section II-B). Without such clear separation,
the host processor (whether it be CPU [22] or GPU [77]) and
PIM cores can simultaneously access the same memory bank
within the PIM device, leading to a structural hazard at shared
resources (e.g., I/O bus within the PIM device). Properly
arbitrating host and PIM core’s simultaneous memory accesses
requires the host processor’s memory controller to be heavily
modified, making it challenging to support such feature while
still abiding by the strict latency constraints defined within
DRAM protocols (e.g., DDR4). Consequently, commercial
PIM systems integrated at the memory bus circumvent this
challenge by employing separate physical address spaces for
DRAM and PIM, allowing only a single entity (either the host
processor or the PIM core) to access the PIM address space
at any given time. As such, current PIM programming model
requires programmers to first allocate input data in the DRAM
address space and then “explicitly” copy that data to the PIM
address space when the PIM core is idle.

In this work, we first uncover fundamental challenges
associated with data transfers across DRAM and PIM by
characterizing UPMEM’s commercial PIM integrated sys-
tem. The data transfer operations in UPMEM-PIM employ
several optimization strategies including (1) the usage of
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AVX-512 vector load/store instructions [54] to migrate data
across DRAM↔PIM, (2) which are heavily multi-threaded to
maximize data transfer throughput over the off-chip memory
channels. Unfortunately, despite the heavy use of CPU cores
and high power consumption to explicitly orchestrate such
data movements, we observe that the achieved data transfer
throughput is far from optimal e.g., only 11.6% memory
bandwidth utilization for DRAM reads and 15.5% for PIM
writes during DRAM→PIM data copy operations, causing
non-negligible performance overhead to the end-to-end pro-
gram execution time. Through our detailed characterization
and analysis, we identify the following two factors as the
primary causes of suboptimal read (write) throughput from
(to) both PIM and DRAM:

• Low PIM read/write throughput due to software-
based, coarse-grained memory scheduling. In conven-
tional memory systems, the memory mapping function
that translates a physical address to a DRAM address
partitions the data and distributes them across the DRAM
subsystem in fine granularity to maximize memory-level
parallelism (MLP) using channel/bank-group/bank-level
parallelism. Such fine-grained “hardware-based” mem-
ory mapping architecture (and the associated memory
scheduling algorithm) is completely transparent to the
software layer and helps improve memory bandwidth
utilization. However, data transfers targeting the PIM
address space cannot fully harness MLP because the
data being transferred in and out of the PIM address
space must be localized to a specific memory bank (due
to the bank-level PIM architecture design [22], [70],
[77]), rather than fine-grained interleaving them across
the DRAM subsystem for maximum MLP. Although the
PIM runtime library attempts to better utilize MLP by
employing software multi-threading (e.g., each thread
handles data transfers targeting different banks within a
given memory channel), we observe that such software-
based coarse-grained memory scheduling falls short com-
pared to conventional memory system’s hardware-based
fine-grained memory scheduling, leaving significant per-
formance left on the table.

• Low DRAM read/write throughput due to locality-
centric (and not MLP-centric) memory mapping. As
mentioned above, memory bus integrated PIM systems
separate the physical address space of DRAM and PIM
to obviate the need to modify the host processor’s mem-
ory controller, granting only a single entity (either the
host processor or a PIM core) to access PIM memory.
This separation of DRAM vs. PIM address space is
implemented with a system BIOS update which employs
a memory mapping function that logically divides up
the overall physical address space into two mutually
exclusive regions, one for DRAM and the other for PIM.
We observe that such modification in memory mapping
throttles the MLP that normal DRAM read/write opera-
tions can reap out because it “homogeneously” enforces a

single, locality-centric memory mapping function to both
DRAM and PIM physical addresses. Such design nullifies
all the sophisticated MLP-enhancing features of conven-
tional memory mapping functions (e.g., XOR hashing),
leading to aggravated DRAM read/write throughput.

To this end, we propose a Memory Management Unit
for PIM (PIM-MMU) which is designed to fundamentally
address the challenges associated with DRAM↔PIM data
transfers in memory bus integrated PIM system, synergistically
combining the following three key components:
• Data Copy Engine. In our proposed system, PIM pro-

grammers are provided with a software interface that
completely offloads DRAM↔PIM data transfers to a
Data Copy Engine (DCE). DCE not only handles the
data copy operations but also the data preprocessing op-
erations (e.g., data transpose), accelerating the end-to-end
DRAM↔PIM data transfers without CPU intervention.

• PIM-aware Memory Scheduler. To overcome the lim-
itations of PIM’s software-based coarse-grained memory
scheduling, we propose a hardware-based, PIM-aware
Memory Scheduler (PIM-MS) which is integrated inside
our DCE. PIM-MS enhances PIM read/write throughput
by leveraging the unique properties of DRAM↔PIM
data transfers where coarse-grained data copy opera-
tions targeting different PIM cores (designated by PIM
programmers at the software level) can be reordered
without affecting program correctness. PIM-MS utilizes
such property to enable fine-grained memory scheduling
at the hardware level, drastically improving MLP and thus
the PIM read/write throughput.

• Heterogeneous Memory Mapping Unit. We also in-
troduce a unique hardware-based memory mapping ar-
chitecture named Heterogeneous Memory Mapping Unit
(HetMap) that enables PIM-MMU to separate the address
space of DRAM and PIM while also enabling high
DRAM read/write throughput. HetMap maintains a dual
set of memory mapping functions: (1) an MLP-centric
mapping function for memory transactions targeting the
normal DRAM address space, and (2) a locality-centric
mapping function that is designed to honor the per-bank
PIM address spaces by localizing the mapped regions
within each PIM core’s memory bank.

Putting everything together, PIM-MMU improves the
DRAM↔PIM data transfer throughput by an average 4.1×
(max 6.9×) and enhances its energy-efficiency by 4.1× (max
6.9×), resulting in a 2.2× end-to-end speedup (max 4.0×) for
real-world PIM workloads.

II. BACKGROUND

A. Memory Mapping Architecture

The memory mapping function within the memory con-
troller is designed to map the physical address space to the
DRAM subsystem (i.e., channels, ranks, banks, and rows)
while maximizing MLP. To enhance channel-level parallelism,
for instance, the memory mapping function maps memory
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Fig. 1: (a) Intel Xeon CPU server’s memory system topology.
(b)-(d) show the BIOS configuration related to different memory
mapping functions and how they translate into exploiting MLP. While
the BIOS configuration also supports N-way NUMA/rank/bank-level
interleaving, we omit discussing them for brevity.

channels using bits within the physical address that change
frequently. In general, bits closer to the least significant bit
(LSB) are likely to change more often, so the memory map-
ping function tries to utilize these bits to distribute memory
requests evenly across the memory channels [82]. However,
the frequency in which bits within the address closer to the
LSB change can vary depending on the program’s memory
access pattern. To better accommodate such variability, ad-
vanced memory mapping functions utilize XOR hashing [115].
Specifically, XOR hashing takes multiple physical address bits,
from the LSB to the most significant bit (MSB), to compute
the channel address which enables the DRAM subsystem to
better adapt to diverse memory access patterns.

In modern high-end server class x86 CPUs (or GPUs), the
memory mapping function can be customized by adjusting the
BIOS configuration (or vBIOS in the context of GPUs [99]).
In Intel Xeon CPUs, for instance, the BIOS configuration
provides a knob to enable (aka N-way) or disable (aka 1-way)
address interleaving across different hierarchical levels of the
DRAM subsystem (Figure 1). Turning on N-way interleaving
that targets a specific DRAM subsystem (e.g., Integrated
Memory Controller (IMC) level interleaving, channel level
interleaving, . . .) thus enables the memory mapping function
to exploit MLP at that particular DRAM subsystem. As shown
in Figure 1(b), configuring the memory mapping function
as 1-way interleaving for both IMC level and channel level
positions their corresponding address bits closer to the MSB,
making it challenging to fully exploit MLP. Conversely, in the
configuration shown in Figure 1(c), adjusting channel level
interleaving to N-way moves the channel bits closer to the
LSB, which helps better exploit MLP. However, maintaining
the IMC level interleaving at 1-way results in the IMC bits to
be placed near the MSB, rendering the lower physical address
space to be mapped only at channels 0 and 1, connected to
IMC0 (and the higher physical address space to be mapped at
channel 2 and 3, connected to IMC1). To fully exploit MLP,
the BIOS must be configured as N-way interleaving across all
DRAM subsystems which positions both the IMC and channel
bits closer to the LSB (Figure 1(d)).

B. PIM Integrated System and Its Address Space Management

Real-world industrial PIM devices such as HBM-PIM [77]
and UPMEM-PIM [22] employ a bank-level PIM architecture
(one or two memory banks contain a single PIM core) which
are integrated at the host processor’s memory bus alongside
conventional DRAM. Below we discuss the unique address
space management employed in memory bus integrated PIM.

Current PIM systems employ a PIM-specific BIOS update
to maintain separate physical address spaces for PIM and
DRAM [77], [106]. This design decision is due to the lim-
itations coming from existing DRAM-specific protocols (e.g.,
DDR4 [98]), which dictate a deterministic latency behavior. To
better explain the intricacy of our problem in hand, consider
the example in Figure 2(a) where both the host processor and
the PIM core tries to access the same memory bank within
the PIM device simultaneously. Such situation complicates the
task for the baseline host-side memory controller in managing
this structural hazard, unless it is heavily modified to properly
handle this conflicting scenarios. For instance, the memory
controller would have to arbitrate memory accesses between
the host processor and PIM core, which can lead to violation of
the DRAM-specific protocols as their access latency changes
(i.e., arbitration cannot guarantee deterministic latency). Con-
sequently, PIM manufacturers have designed their systems
to prevent this situation from happening by employing the
following two techniques. First, only a single entity, either the
host processor (Figure 2(b)) or the PIM core (Figure 2(c)), can
access the PIM address space at any given time. This design
decision obviates the need to modify the host processor’s
memory controller, easing PIM’s integration in conventional
systems. Second, fine-grained address interleaving employed
in conventional memory mapping (Figure 1(d)) is disabled so
that it prevents segments of both the DRAM and PIM physical
addresses from being mapped to the same memory bank.
As depicted in Figure 2(d), having parts of the DRAM and
PIM physical address both be mapped at a common memory
bank causes the resource conflicting scenario discussed in
Figure 2(a). As such, the PIM-specific memory mapping in
current PIM systems make sure that the physical DRAM (and
PIM) addresses are mapped locally within a DRAM (and PIM)
DIMM (Figure 2(e)). A tradeoff made with this design is
that the PIM programmer must explicitly copy data across the
DRAM address space and the PIM address space, whenever a
data is offloaded from DRAM to PIM, and vice versa.

C. UPMEM-PIM Hardware/Software Architecture

Hardware architecture. UPMEM-PIM is based on
a DDR4-2400 DIMM form factor, equipped with eight
UPMEM-PIM chips per rank. Each UPMEM-PIM chip con-
tains eight PIM cores (called DPUs by UPMEM), one PIM
core per each DRAM bank. A single host CPU can support
up to 1,280 PIM cores and a single PIM core is capable of
achieving a peak memory bandwidth of 1 GB/s, allowing the
aggregate memory bandwidth to exceed 1 TB/sec.

Programming model. Similar to CUDA [89], UPMEM-
PIM adopts the co-processor computing model, where the
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Fig. 3: Bytes that constitute a given data word
(‘D’,‘A’,‘T’,‘A’,‘W’,‘O’,‘R’,‘D’) is colored identically. (a) Chip
interleaving in a conventional DIMM-based memory system and (b)
why UPMEM-PIM requires a transpose operation to be applied to
the copied data beforehand to localize them within a single chip.

CPU offloads a memory-intensive task to PIM. To offload a
task to UPMEM-PIM, programmers are required to write two
distinct segments of code: the PIM-side code and the host-
side code. In the PIM-side code, the programmer describes
the task to be offloaded to PIM which follows the single-
program multiple-data (SPMD) model, i.e., a single program
gets executed by multiple PIM cores. Within the host-side
code, the programmer designates the total number of PIM
cores to utilize, which input data to transfer over to the
PIM address space (DRAM→PIM), and which output results
derived by the PIM cores to transfer back into the DRAM
address space (PIM→DRAM), all of which is programmed
using APIs provided in UPMEM-PIM’s software stack.

Runtime library for data transfers. The UPMEM-PIM
runtime library offers a layer of abstraction that hides low-level
details of the PIM hardware from the programmer, one notable
example being the need for preprocessing data before they
are transferred over to PIM. The need for data preprocessing
arises due to the way chip interleaving is employed within the
DIMM. Each data word (8 bytes) is partitioned in a 1-byte
granularity and distributed across multiple UPMEM-PIM chips
(8 UPMEM-PIM chips in a ×8 configuration), an example
we illustrate in Figure 3(a). Such data interleaving across
UPMEM-PIM chips presents a significant challenge for PIM
computation because each (bank-level) PIM core only receives
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Fig. 4: The fraction of active CPU cores (left axis) and system
power consumption (right axis) during (a) DRAM→PIM and (b)
PIM→DRAM data transfer. System power consumption is measured
using Intel’s Performance Counter Monitor (PCM) [55].

a fraction of a data word. To address this issue, the UPMEM-
PIM runtime library transposes the data into an (8×8) byte
matrix and copies the transposed matrix across the 8 UPMEM-
PIM chips, allowing each PIM core to receive the full 8-byte
data word within its own memory bank (Figure 3(b)).

When it comes to the actual DRAM↔PIM data transfer
implementation (using dpu_push_xfer [106]), the runtime
library employs several software optimizations to enhance the
DRAM↔PIM data transfer throughput. These include (1) the
usage of AVX-512 vector load/store instructions to transfer
data in large chunks, and (2) using multi-threaded implemen-
tations to initiate a large number of parallel data transfers
concurrently as means to maximize data transfer throughput.
Unfortunately, despite these efforts to optimize performance,
our characterization reveals that the observed performance is
far from ideal, which we root-cause in Section III-A.

III. MOTIVATION AND SYSTEM CHARACTERIZATION

A. Motivation

This paper explores the system-level challenges associated
with memory bus integrated PIM systems employing a bank-
level PIM architecture as they represent a state-of-the-art,
commercially available PIM system, i.e., UPMEM-PIM [22].
In particular, we focus on UPMEM’s general purpose PIM
system due to their immediate market availability but more
importantly their open-source software ecosystem driven by
both industry [106], [107] and academia [13], [32], [33], [36]–
[38], [42]–[44], [51], [57], [58], [81], [88].

This section conducts a characterization on UPMEM-PIM
to root-cause the underlying challenges of its DRAM↔PIM
data transfers (Section V details our evaluation methodol-
ogy). Memory bus integrated PIM systems employ separate
physical addresses for DRAM and PIM, necessitating explicit
DRAM↔PIM data transfers (Section II-B). As we quantify in
Section VI, the latency to transfer data across these two regions
incur significant performance overhead, accounting to as much
as 99.7% (average 63.7%) of end-to-end execution time of our
evaluated PIM workloads [43]. Such observation is inline with
prior work [1], [42]–[44], [51], underscoring the importance
of optimizing this critical system-level bottleneck. Next we
root-cause the reason behind the sub-optimal performance of
DRAM↔PIM data transfers.
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Such limitation is better addressed in (c) which utilizes multiple
concurrent PIM threads that target different channels/banks for data
transfers, achieving higher memory throughput. In the pseudo-code
in (b-c), the role of PIMcpy is conceptually identical to UPMEM-
PIM’s dpu_push_xfer or CUDA’s cudaMemcpy APIs.

B. System Characterization and Key Challenges

(Challenge #1) High CPU core utilization and power
consumption. The DRAM→PIM data transfer involves three
main stages: (1) reading from DRAM, (2) preprocessing, (3)
and writing to PIM, with the reverse sequence applied for
PIM→DRAM transfers. Our first key observation is that, be-
cause the CPU is in charge of orchestrating the entire process
of data transfers, it significantly taxes the host processor,
leading to high power overheads. Figure 4 illustrates the effect
of DRAM↔PIM data transfers on CPU core utilization and
system power consumption. As discussed in Section II-C, the
data transfer operation in the UPMEM-PIM runtime library
is implemented using AVX-512 vector load/store instructions,
which are known to be power hungry [39], [105]. Conse-
quently, data transfers across DRAM vs. PIM addresses push
CPU core utilization to near maximum levels and reach close
to 70 Watts of system power consumption.

Despite such high power overheads, DRAM↔PIM data
transfers exhibit limited efficiency from a throughput perspec-
tive, significantly underutilizing available memory bandwidth.
Below we root-cause the reason behind why contemporary
PIM system achieves such low data transfer throughput.

(Challenge #2) Sub-optimal PIM read/write throughput.
Conventional DRAM systems are provisioned with MLP-
enhancing microarchitectural support. For instance, the mem-
ory mapping function, which translates physical addresses to
DRAM addresses, partitions/distributes the data across the
DRAM subsystem in fine granularity to maximize MLP. Such
“hardware-based” memory mapping is entirely transparent to
the software layer and helps evenly distribute the memory
read/write traffic across the memory channels (Figure 5(a)).

In contrast, UPMEM-PIM is unable to fully reap out the
MLP enhancing opportunities inherent within such hardware-
based memory mapping architectures due to its bank-level PIM
design. One key characteristic of bank-level PIM systems is
their need for input data to be made locally available within the
target PIM core’s memory bank (Figure 3(b)), before the PIM
kernel is executed. Consequently, PIM programmers must ex-
plicitly designate which input data should be transferred over
to which PIM core’s memory bank using software APIs that
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Examples assume that channels 0, 1, 2 are (read) source channels
and channels 3, 4, 5 are (write) destination channels. We measure
the per-channel write throughput using Intel VTune [56] by executing
microbenchmarks over real UPMEM-PIM systems. Section V details
the microbenchmarks and our evaluated system configuration. Note
that in (a) DRAM→PIM data transfer, we manually assigned DRAM
to channels 0-2 (read requests) and PIM to channels 3-5 (write
requests) by adjusting the BIOS configuration.

enable DRAM↔PIM data transfers (e.g., dpu_push_xfer
in UPMEM-PIM). Unfortunately, because the transferred data
is targeted for a specific memory bank, it becomes challenging
to fully leverage channel/bank-group/bank-level parallelism
in transferring such data, leading to underutilization of PIM
read/write throughput (Figure 5(b)).

Given the limitation of bank-level PIM architectures in
leveraging MLP, UPMEM-PIM exploits thread-level paral-
lelism (TLP) to maximally utilize available memory band-
width. As depicted in Figure 5(c), the UPMEM-PIM runtime
library launches multiple software threads for DRAM↔PIM
data transfers by having each thread to perform read/write
operations targeting different levels in the PIM hierarchy
(e.g., thread ID=0 targets PIM channel 0/bank 0 while thread
ID=1 targets PIM channel 1/bank 0, . . .), the goal of which
is to maximize data transfer throughput and MLP. While
utilizing TLP does help improve PIM read/write throughput,
our key observation is that such software-based multi-threaded
approach falls short in fully leveraging MLP for enhanced
performance. This is because the effectiveness of the multi-
threaded PIM data transfers is contingent upon how the
Operating System (OS) schedules these threads, which may
not necessarily be aligned with the optimal distribution of
data accesses across the PIM hierarchy. In general, the OS
thread scheduling policy prioritize fairness [94] which may not
necessarily lead to threads being scheduled in a manner that
balances its memory accesses across the memory subsystem.
This is natural as the OS is (and should be) unaware of the
existence of PIM. For instance, if the OS thread scheduler
prioritizes the execution of three PIM threads transferring data
in channel A and one thread in channel B during a time
interval of T, channel A will experience a higher concentra-
tion of data accesses. To maintain system-wide fairness, the
scheduler may adjust the scheduling priority during the next
time interval of T to allow more threads to execute in channel
B. While such scheduling policy better guarantees fairness,
it can lead to inefficient utilization of memory bandwidth
because certain memory channels are preferentially accessed
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Fig. 8: Normalized DRAM bandwidth utilization (x-axis) with a
locality-centric mapping (red) and MLP-centric memory mapping
(black) over sequential and strided memory access patterns.

for longer periods of time, i.e., time interval T is in the order
of several ms. In Figure 6(a), we illustrate the implication
of such coarse-grained, software-based DRAM→PIM data
transfer. As shown, such software-based approach is not able
to fully utilize MLP due to traffic congestion happening
at certain PIM channels, unlike the conventional hardware-
based data transfers (Figure 6(b)), which evenly distributes
data traffic across all memory channels, leading to higher
memory bandwidth utilization. Overall, data transfers targeting
PIM exhibits sub-optimal memory bandwidth utilization, only
achieving around 15.5% of its theoretical peak value, e.g.,
averaging at 8.9 GB/sec vs. the maximum value of 57.6
GB/sec during DRAM→PIM data transfer.

(Challenge #3) Sub-optimal DRAM read/write through-
put. Section II-B discussed the need for separating the phys-
ical addresses of DRAM vs. PIM using alternative mem-
ory mapping functions via BIOS updates (Figure 2(e)). An
unfortunate side-effect of such memory mapping is that it
introduces a decrease in DRAM read/write throughput. We
observe that the adjustment in memory mapping used for PIM
integrated systems removes MLP-optimized XOR hashing
techniques [115] employed in conventional memory mapping
functions. Specifically, the adjusted memory mapping function
(Figure 7(a)) places the channel bits closer to the MSB
to localize the mapping of PIM physical addresses to PIM
DIMMs (and DRAM physical addresses to DRAM DIMMs),
unlike the standard practice of positioning them closer to the
LSB while also employing XOR hashing to enhance MLP
(Figure 7(b)). Because only a single memory mapping function
can be employed “homogeneously” within the overall memory
system, both PIM and DRAM DIMMs integrated at the
memory bus are enforced with such locality-centric memory
mapping (Figure 7(a)), limiting the level of parallelism normal
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Fig. 9: PIM-MMU architecture overview.

DRAM physical addresses can reap out1. In Figure 8, we
compare the read/write throughput targeting normal DRAM
physical addresses using locality-centric memory mapping
(red) vs. MLP-centric memory mapping (black). As depicted,
the DRAM read/write throughput under the locality-centric
mapping is only 30% of what is achievable with conven-
tional MLP-centric mapping, regardless of the memory access
pattern. This substantial throughput difference highlights the
inability of PIM integrated system in fully exploiting MLP.

IV. PIM-MMU ARCHITECTURE

A. High-Level Overview

Through our characterization in Section III, we root-caused
the low performance and high resource usage of DRAM↔PIM
data transfers. We propose a Memory Management Unit for
PIM (PIM-MMU), a hardware/software co-design that enables
energy-efficient DRAM↔PIM transfers for memory bus inte-
grated PIM systems. Figure 9 provides a high-level overview
of PIM-MMU which contains the following three key hard-
ware components: (1) Data Copy Engine (DCE), (2) PIM-
aware Memory Scheduler (PIM-MS), and (3) Heterogeneous
Memory Mapping Unit (HetMap). User-level applications are
able to utilize our PIM-MMU architecture via a dedicated
software interface that completely offloads DRAM↔PIM data
transfers. In the remainder of this section, we first discuss PIM-
MMU’s software stack followed by a detailed description of
PIM-MMU’s hardware architecture.

B. Software Architecture

In our proposed system, PIM programmers are provided
with the software interface to leverage PIM-MMU for accel-
erating DRAM↔PIM data transfers. Specifically, our software
stack contains the following two components, the PIM-MMU
runtime library and the PIM-MMU device driver. We use
the example in Figure 10 that conducts a DRAM→PIM data
transfer to describe our software interface.

User-level runtime library. The PIM-MMU runtime li-
brary offers a user-level API (pim_mmu_transfer) that
provides an abstraction to offload data transfers to our hard-
ware DCE. This API utilizes a custom struct data type
(pim_mmu_op) as an input argument to acquire the nec-
essary information to offload DRAM↔PIM data transfers
to the DCE (e.g., data transfer direction (DRAM_TO_PIM),

1It is worth clarifying that enabling MLP-enhancing address interleaving
knobs (i.e., N-way interleaving, see Figure 1) only within the DRAM physical
address space while disabling them for the PIM physical address space is not
supported under the current system BIOS configuration.



1 #define NUM_PIMCORES 512
2 #define XFER_PER_BANK 131072
3
4 struct dpu_set_t dpu_set, dpu;  
5 int *data;
6 int i;
7
8  data = malloc(NUM_PIMCORES * XFER_PER_BANK * sizeof(int));
9  data = initRandomData();
10
11 DPU_FOREACH(dpu_set, dpu, i) {
12   dpu_prepare_xfer(dpu, data + XFER_PER_BANK * i);
13 }
14
15 dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, 
16 DPU_MRAM_HEAP_POINTER_NAME, XFER_PER_BANK * sizeof(int), 
17 DPU_XFER_DEFAULT);

1 #define NUM_PIMCORES 512
2 #define XFER_PER_BANK 131072
3  
4  struct pim_mmu_op ops = { };
5 int **src_arr;
6 int *data, dest_pim_id_arr;
7
8  data = malloc(NUM_PIMCORES * XFER_PER_BANK * sizeof(int));
9  data = initRandomData();
10 src_arr = malloc(NUM_PIMCORES * sizeof(int*));
11 dest_pim_id_arr = malloc(NUM_PIMCORES * sizeof(int));
12 
13 for (int i = 0; i < NUM_PIMCORES; i++) {
14   src_arr[i] = data + (XFER_PER_BANK * i);
15 dest_pim_id_arr[i] = i; // PIM core ID
16 }
17
18 ops.type = DRAM_to_PIM;
19 ops.size_per_pim = XFER_PER_BANK;
20 ops.dram_addr_arr = src_arr;
21 ops.pim_id_arr = dest_pim_id_arr;
22 ops.pim_base_heap_ptr = DPU_MRAM_HEAP_POINTER_NAME;
23 pim_mmu_transfer(ops);

(a)

(b)

Fig. 10: Example pseudo-code showing how input data (128K ele-
ments for each PIM core) is transferred over to UPMEM-PIM using
(a) conventional PIM programming APIs provided with UPMEM-
PIM, and (b) our proposed PIM-MMU specific APIs. It is worth
pointing out that the PIM address (whether it be used as source
or destination for data transfers) can be derived precisely using the
PIM core ID (dest_pim_id_arr) and the base heap pointer value
(DPU_MRAM_HEAP_POINTER_NAME) [106] (line 21−22 in (b)).

data transfer size per bank (XFER_PER_BANK), and an
array of pointers that designate where the source data
(src_arr) as well as destination data (dest_pim_id_arr
and DPU_MRAM_HEAP_POINTER_NAME) are located (line
18−23 in Figure 10(b)). Unlike the baseline UPMEM-PIM
implementation (dpu_push_xfer) where multiple threads
orchestrate DRAM↔PIM data transfers (line 11−15 in Fig-
ure 10(a)), a call to pim_mmu_transfer invokes a single
thread that offloads all the necessary information required for
DRAM↔PIM data transfers to the DCE.

Device driver. The DCE is registered as an I/O device by
mapping its corresponding Base Address Register (BAR) in
the memory address space using MMIO (memory-mapped
I/O). Existing on-chip components, such as the host pro-
cessor’s memory controller, already employ an MMIO-based
approach for software-hardware communication [65], so our
DCE can similarly be integrated into current software sys-
tems seamlessly. To support MMIO-based communication for
the user-level pim_mmu_transfer API, the PIM-MMU
device driver interacts with the runtime library and man-
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Fig. 11: Example illustrating PIM-MMU’s overall dataflow in trans-
ferring data from DRAM to PIM.

ages MMIO access at the kernel-level. Specifically, when the
pim_mmu_transfer API sends pim_mmu_op informa-
tion to the PIM-MMU device driver, the driver writes this
information to the MMIO region mapped to the DCE and
finalizes the offloading of DRAM↔PIM data transfer, putting
the requesting user process into sleep mode. Upon a successful
data transfer completion, the PIM-MMU device driver receives
an interrupt signal from the DCE, enabling the host processor
to wake up and handle the interrupt appropriately.

C. Data Copy Engine (DCE)

The DCE contains the following components: (1) an Ad-
dress Generation Unit (AGU), (2) PIM-MS, (3) two SRAM-
based buffers (data buffer and address buffer), and (4) a
preprocessing unit (Figure 9). We use the example in Fig-
ure 11 to illustrate PIM-MMU’s overall dataflow during a
DRAM→PIM data transfer (PIM→DRAM data transfer is
orchestrated similarly but we omit its explanation for brevity).

When the CPU launches the pim_mmu_transfer kernel
for execution, the address buffer is copied with both (1) the
physical DRAM addresses (src_arr) that point to all the
source data arrays (input data array in Figure 11) and
(2) the physical PIM addresses that point to all the destination
locations within PIM (dest_pim_id_arr) to which the
source data will be written into. Each entry in the address
buffer stores the following information: (1) the base DRAM
address of the source input data array (DRAM addr field in
Figure 11), (2) the destination PIM core’s ID (PIM addr
field), and (3) an offset counter value (Offset field) that
keeps track of the total number of data elements success-
fully read from the source data. A data transfer operation
is managed by the PIM-MS, which not only decides which
memory requests to schedule to the DRAM subsystem (PIM-
MS’s memory scheduling algorithm and the key intuitions that
drive its design is detailed in the following Section IV-D), but
it also goes over the address buffer entries and coordinates
the translation of the source/destination physical addresses
to DRAM/PIM addresses with the memory controller. In the
example in Figure 11, we will assume that PIM-MS has chosen
to transfer data targeting PIM core ID=511. PIM-MS first reads
an entry from the address buffer (step ❶ in Figure 11) and
sends it to the AGU (step ❷). The AGU then translates the
source physical address to the corresponding DRAM address
with the memory controller and places the translated memory
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scheduling approach vs. (b) hardware-level/fine-grained scheduling
approach of PIM-MS within DCE.

read request to the memory controller’s read request queue.
These two steps (❶,❷) are iteratively done over all the entries
in the address buffer until the memory controller’s request
queue is full. When the memory controller services a read
operation (step ❸), the retrieved data is temporarily stored
inside the data buffer (❹) and the corresponding address
buffer entry’s Offset counter value is incremented to keep
track of the data transfer progress made so far. The returned
data, stored inside the data buffer, is then read out by the
preprocessing unit and is transposed on-the-fly (❺), the output
of which is sent to the AGU (❻). The AGU generates the
translated, destination PIM address and places the memory
write request to the memory controller’s write request queue,
which eventually gets serviced by the memory controller and
finalizes the DRAM→PIM data transfer (❼).

D. PIM-aware Memory Scheduler (PIM-MS)

We now discuss the design principles behind our PIM-
MS. The key observation that drives PIM-MS’s design is
that memory transactions targeting the PIM address space
(for both reads and writes) during DRAM↔PIM data transfer
are guaranteed to have mutually exclusive addresses. Such
mutual exclusiveness ensures that there are no true data
dependencies across different PIM memory transactions. To
better understand this unique property, it is important to
understand how PIM programmers go about partitioning in-
put/output data. Before computation begins on the PIM cores,
the programmer partitions the input data, assigns each partition
to a specific PIM address, and transfers the partitioned data
to the corresponding PIM core. To maintain the integrity of
the offloading process and to ensure that all input data are
transferred correctly, the programmer must carefully assign
each segment of the partitioned data to a unique PIM address.
Consequently, each segment stored within the PIM address
space is mapped independently to other segments.

With such property in mind, recall from our discussion
in Section III-B (Figure 5) where we root-caused the rea-
son behind PIM’s sub-optimal read/write throughput to the
following two factors: (1) the software-level multi-threaded
DRAM↔PIM data transfer, and (2) the fact that the OS
thread scheduling policy issues data transfer threads in
coarse granularity, failing to evenly distribute read/write traffic
across the memory channels (Figure 12(a)). Our PIM-MS
is designed to overcome such limitation by employing a
“hardware-level” fine-grained memory scheduling that maxi-

Algorithm 1 PIM-MS Scheduling Algorithm

1: Input: (Number of PIM cores)-sized list of tuples of (source base address,
destination base address);
base addrs = [(src base0, dst base0) . . . (src baseN , dst baseN )]

2: Output: List of tuples of (source address, destination address), determining the
sequence in which memory transactions are scheduled;
addrs = [(src0, dst0) . . . (srcN , dstN )]

3:
4: procedure get_pim_core_id(ra, bg, bk)
5: return ra∗num banks∗num bankgroups +bg ∗num banks+ bk

6: end procedure
7:
8: procedure AGU(id)
9: src base, dst base = base addrs[id]

10: src addr = src base + pim cores[id].offset
11: dst addr = dst base + pim cores[id].offset
12: pim cores[id].offset += min access granularity
13: return src addr, dst addr
14: end procedure
15:
16: #do-parallel channel
17: begin initialization
18: for ra← 0 to num ranks do
19: for bg ← 0 to num bankgroups do
20: for bk ← 0 to num banks do
21: id = get_pim_core_id(ra, bg, bk)
22: pim cores[id].offset = 0
23: end for
24: end for
25: end for
26: end initialization
27:
28: #do-parallel channel
29: for bk ← 0 to num banks do
30: for ra← 0 to num ranks do
31: for bg ← 0 to num bankgroups do
32: id = get_pim_core_id(ra, bg, bk)
33: src addr, dst addr = AGU(id)
34: addrs.append(src addr, dst addr)
35: end for
36: end for
37: end for

mizes MLP (Figure 12(b)). As explained in Section IV-B, upon
a DRAM→PIM data transfer, the pim_mmu_transfer API
is invoked using a single thread that relays all source and
destination addresses to the DCE. Therefore, when the OS
schedules this (single) thread for execution, the source and
destination physical addresses stored inside the address buffer
gets translated into DRAM read/write requests that are targeted
for all destination PIM banks (unlike baseline’s software-
level/multi-threaded/coarse-grained thread scheduling where
the memory requests available for scheduling only target a
single destination PIM bank at any given time). This in
effect allows our PIM-MS to have much higher visibility
and flexibility regarding which memory read/write requests
to schedule to which PIM bank.

Given this opportunity, PIM-MS employs a memory
scheduling algorithm that exploits its enhanced visibility to
maximize channel/bank-group/bank-level parallelism, aggres-
sively reordering the sequence in which PIM read/write mem-
ory requests are issued to each PIM bank. We use Algorithm 1
to describe PIM-MS’s scheduling algorithm. The input to
Algorithm 1 is the contents stored inside the address buffer,
as detailed in Section IV-C (Figure 11). During initialization,
the metadata representing the number of bytes to be trans-
ferred to each PIM core (i.e., pim_cores[id].offset,
the “Offset” field in the address buffer entry in Figure 11)



is set to 0 (line 16-26). PIM-MS then seeks to maximize
channel-level parallelism by concurrently issuing memory
requests to all PIM channels (line 28). To minimize column-
to-column DRAM timing delay (tCCD), PIM-MS prioritizes
bank group interleaving by issuing successive column com-
mands to access different bank groups (line 31). Lastly, using
AGU translated DRAM address information, PIM-MS seeks
to minimize row buffer conflicts while maximizing bank-
level parallelism (line 8-14). Overall, such hardware-level/fine-
grained memory scheduling helps better utilize MLP, signif-
icantly improving PIM read/write throughput vs. baseline’s
software-level/coarse-grained memory scheduling (Figure 12).

E. Heterogeneous Memory Mapping Unit (HetMap)

PIM manufacturers adjust the memory mapping function to
prevent conflicts between DRAM and PIM, which inevitably
leads to decreased DRAM read/write throughput (Figure 8,
Section III-B). To achieve the dual goals of preserving high
DRAM throughput while also separating the physical address
space for DRAM and PIM, we introduce a unique memory
mapping strategy called HetMap. Illustrated on the right side
of Figure 9, HetMap employs two separate memory mapping
functions, each optimized for a different design objective: the
physical address space reserved for PIM utilizes a locality-
centric mapping (Figure 7(a)) whereas the physical address
space allocated for DRAM employs an MLP-centric mapping
(Figure 7(b)). Depending on what the physical address the
incoming memory request is targeted for, HetMap dynam-
ically determines whether the memory request falls within
the address space of DRAM or PIM. If the memory request
is targeted for the DRAM space, it is mapped using the
MLP-centric mapping, which incorporates MLP-enhancing
optimizations, i.e., XOR hashing and placing channel bits
near the LSB. If the memory request belongs to the PIM
space, the locality-centric mapping is employed which adopts
a simpler memory mapping strategy, i.e., the order in which the
DRAM hierarchy is laid out is preserved in the locality-centric
mapping (referred to as ChRaBgBkRoCo mapping in the re-
mainder of this paper). For example, starting from the MSB of
the physical address space, channel bits (Ch) are mapped first,
followed by rank (Ra), bank-group (Bg), bank (Bk), row (Ro),
and finally column (Co). As the sub-optimal PIM read/write
throughput observed in conventional PIM devices is due to the
software-level/coarse-grained/multi-threaded data transfers (a
limitation which our PIM-MS effectively addresses), HetMap’s
locality-centric mapping does not degrade PIM throughput, a
property we quantitatively demonstrate in Section VI.

In terms of implementation complexity, HetMap is co-
designed with the BIOS firmware and hardware microar-
chitecture as follows. During system bootstrapping, the
BIOS identifies the memory system configuration (number
of channels/ranks/. . .) as well as the total memory capacity
available in both DRAM DIMMs and PIM DIMMs. After the
memory configuration is identified, the BIOS firmware informs
the CPU’s memory controller the range in which the physical
address space is partitioned across DRAM vs. PIM. Following

this procedure, the separate address mappings are established
for DRAM and PIM which HetMap utilizes to enforce the
locality-centric and MLP-centric mapping for PIM and DRAM
access requests, respectively.

F. PIM-MMU vs. Conventional DMA Engines

To alleviate the performance overhead of memory copy
operations (e.g., memcpy, memmove), there exists several
Direct Memory Access (DMA) engines that orchestrate data
copy without CPU’s intervention, e.g., Intel I/OAT [83], [108],
[109], [116], Intel DSA [53], [69], and AMD PTDMA [21].
One might wonder whether the challenges of DRAM↔PIM
data transfers can be effectively addressed by utilizing existing
DMA engines. However, memory bus integrated PIM systems
have fundamental architectural differences compared to con-
ventional systems without PIM, limiting the efficacy of these
DMA engines. As discussed in Section III, data partitioning
as well as transferring partitioned data in/out of PIM is at
the programmer’s discretion, unlike conventional DRAM-only
memory systems where the allocation of data, its partitioning,
and its transfers are transparently handled at the hardware-level
to maximize MLP. Consequently, current PIM systems rely
on coarse-grained, multi-threaded data transfers to maximize
MLP at the software-level. Because DMA engines are not
designed to utilize this unique property of PIM systems for
performance optimizations, they are not able to fully reap out
the abundant parallelism inherent in DRAM↔PIM data trans-
fers. As discussed in Section IV-D, PIM-MMU’s DCE and
PIM-MS can collaboratively utilize such opportunity with our
hardware/software co-design, maximizing memory bandwidth
utilization for both PIM read and write operations.

Overall, while some of the functionalities provided with
DCE (especially its ability to independently orchestrate data
transfers without the CPU’s assistance) does resemble those
of existing DMA engines, the features provided with our
PIM-MMU is far beyond what current DMAs are capable
of providing, e.g., the fine-grained scheduling of PIM-MS
and HetMap’s dual-mapping function. In Section VI, we
quantitatively demonstrate the limitations of existing DMA
engines vs. our PIM-MMU architecture.

V. METHODOLOGY

The system characterization in Section III is conducted
using a real UPMEM-PIM system, containing an Intel Xeon
Gold 5222 CPU attached with 3 channels of DDR4-3200
DIMM (total bandwidth of 76.8 GB/s) and 3 channels of
DDR4-2400 based UPMEM-PIM DIMM (total bandwidth of
57.6 GB/s) with one DIMM per each channel. To demonstrate
the effectiveness of PIM-MMU in Section VI, we employ a
hybrid evaluation methodology that utilizes both cycle-level
simulation and wall-clock time measurements from our real
UPMEM-PIM system as follows.

Simulation framework. Since our proposed PIM-MMU is
designed to improve the performance of DRAM↔PIM data
transfers and not the performance of executing the PIM kernels
itself, we measure the PIM kernel execution time using our



TABLE I: Baseline system and PIM-MMU configuration.
Host Processor

CPU 8 core, 3.2GHz, 4-wide Out-of-Order,
224 entry instruction window, 64 MSHRs per core

Last Level Cache (LLC) 8MB shared, 64B cacheline, 16-way associative

Memory Controller 64-entry read & write request queues, FR-FCFS,
locality-centric memory mapping

DRAM System
Timing Parameter DDR4-2400
System Configuration 4 channels, 2 ranks per channel

PIM System
Timing Parameter DDR4-2400
System Configuration 4 channels, 2 ranks per channel (512 PIM cores)

PIM-MMU

DCE 3.2GHz clock frequency,
16 KB data buffer, 64 KB address buffer

PIM-MS Detailed in Algorithm 1

HetMap (DRAM side): MLP-centric memory mapping
(PIM side): ChRaBgBkRoCo

real UPMEM-PIM server. When estimating the performance
and energy-efficiency of DRAM↔PIM data transfers over
both baseline UPMEM-PIM and our proposed PIM-MMU,
we utilize cycle-level simulation by extending Ramulator [68]
(the configuration of the host CPU and its DRAM/PIM
memory system is summarized in Table I). To simulate the
cycle count of baseline UPMEM-PIM’s data transfers with-
out PIM-MMU, we compile UPMEM-PIM runtime library’s
dpu_push_xfer function (one that handles DRAM↔PIM
transfers) using gcc 9.4.0 and extract the instruction traces
that will be executed by the CPU, one which Ramulator’s
CPU-trace driven mode executes to evaluate the DRAM↔PIM
data transfer time. Note that the CPU model in Ramulator
currently does not support AVX instructions, which are utilized
by UPMEM-PIM to orchestrate DRAM↔PIM transfers. To
model the effect of AVX vector load (PIM read) and store
(PIM writes) instructions in our evaluation, we modified
Ramulator and its core model and emulate the behavior of
AVX load/store instructions by executing them as “wide”
64B read (PIM read) and 64B write (PIM write) memory
accesses. Because memory requests targeting the PIM address
space are non-cacheable, we implement these 64B read/write
operations to bypass the cache, unlike the normal, cacheable
(8B) read/write operations which target the DRAM address
space. To model the effect of OS thread scheduling on baseline
UPMEM-PIM’s multi-threaded data transfers (Figure 5), we
configure Ramulator to concurrently execute 8 data transfer
operations targeting 8 PIM cores (i.e., the baseline CPU
contains 8 cores, Table I) which are preempted every 1.5
ms based on a round-robin thread scheduling policy [94].
Our PIM-MMU’s simulation time is evaluated by properly
modeling the cycle-level behavior of DCE, PIM-MS, and
HetMap inside Ramulator.

Evaluated workloads. The evaluation in Section VI is
divided into two parts: (1) microbenchmarks that strictly focus
on evaluating the effect of PIM-MMU on DRAM↔PIM data
transfer, and (2) real-world PIM benchmarks that evaluate
PIM-MMU’s effect on end-to-end performance improvement.
As for the microbenchmarks, we establish two data transfer
workloads as follows. First, to measure the data transfer
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Fig. 13: Performance sensitivity of DRAM→PIM data transfer
operation when it is co-located with (a) compute-intensive and (b)
memory-intensive contender workloads. We only present results for
DRAM→PIM data transfer because similar trends were observed for
PIM→DRAM data transfer.

throughput of DRAM↔PIM, we use the microbenchmark
provided in the open-source PrIM [43] benchmark suite
(named CPU-DPU). Second, to measure the data transfer
throughput of DRAM↔DRAM (i.e., memcpy), we design
a custom microbenchmark which employs multi-threading
to transfer data using AVX-512 vector instructions (e.g.,
_mm512_stream_si512) to maximize the throughput of
DRAM. As for the real-world PIM benchmarks, we utilize
the 16 memory-intensive workloads from PrIM [43].

Energy and area overhead estimation. The design over-
head of PIM-MMU is primarily dominated by the 16 KB
(data buffer) and 64 KB (address buffer) of SRAM buffers
provisioned within the DCE. To estimate PIM-MMU’s energy
consumption and area overhead on top of the baseline and
proposed system, we utilize McPAT [79] and CACTI [85]
under 32nm CMOS technology, respectively.

VI. EVALUATION

All results presented in Section VI-A are based on
cycle-level simulation whereas evaluations conducted in Sec-
tion VI-B employ a hybrid of simulation augmented with wall-
clock time measurements over a real UPMEM-PIM system
(Section V details our methodology).

A. Microbenchmarks

Here we evaluate PIM-MMU’s effectiveness in improving
DRAM↔PIM data transfer performance, demonstrating: (1)
the importance of offloading DRAM↔PIM data transfers to
our DCE when other CPU-side contenders fight over CPU
compute and memory resources, (2) the improvement in
DRAM read/write throughput, and finally (3) the importance
of enhancing PIM read/write throughput via an ablation study.

Resource contention with co-located workloads. In real
systems, multiple workloads are typically co-located within
the same server, sharing CPU compute and memory resources.
In Figure 13, we evaluate the sensitivity of PIM-MMU vs.
baseline UPMEM-PIM’s DRAM→PIM data transfer perfor-
mance when it is co-located with (a) compute-intensive and
(b) memory-intensive workloads. For the co-located compute-
intensive workload, we instantiate an increasing number of
spinlock-like CPU core contenders (each contender’s memory
accesses are primarily captured at its on-chip caches, ex-
hibiting compute-boundedness) that concurrently execute with
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DRAM→PIM data transfers (Figure 13(a)). As for the co-
located memory-intensive workload, we allocate half of the
CPU cores to run the resource contending workload, each
contender gradually increased with higher memory access
intensity (from “low” to “very high” intensity, which we tune
by gradually increasing the ratio of memory instructions vs.
non-memory instructions) to increasingly stress the memory
subsystem and thus directly interfere with the concurrently
running DRAM→PIM data transfers (Figure 13(b)).

In our experiment in Figure 13(a), with an increasing num-
ber of compute-intensive CPU core contenders, the baseline
system’s data transfer latency sharply increases. Such perfor-
mance degradation is due to the baseline’s multi-threaded data
transfer implementation (which require multiple CPU cores to
achieve high performance), experiencing resource contention
with the CPU-side contenders and leading to a reduction in
the average number of CPU threads it can leverage for data
transfer operations. Our proposed PIM-MMU, on the other
hand, is virtually insensitive to the level of CPU-side resource
contention as the entire data transfer process is offloaded to
our DCE, exhibiting high robustness.

When the DRAM→PIM data transfer operation is co-
located with memory-intensive workloads (Figure 13(b)), both
PIM-MMU and baseline suffer from aggravated performance.
This is because of the memory bandwidth contention both of
these design points experience, with higher (lower) resource
contention occurring when the memory-intensive contender
exhibits higher (lower) memory access intensity. Nonetheless,
PIM-MMU is able to achieve consistently higher performance
than baseline as PIM-MMU’s data transfer operation does not
require any CPU compute resources. Under the baseline sys-
tem, on the other hand, the data transfer process is orchestrated
using CPU threads which fight over CPU cores with memory-
intensive contenders, resulting in higher performance loss.

DRAM throughput. In Figure 14, we show the DRAM
throughput during DRAM-to-DRAM data transfers (memcpy)
as means to demonstrate how well PIM-MMU’s HetMap un-
locks the MLP available in normal DRAM channels. Overall,
PIM-MMU consistently outperforms baseline, achieving an
average throughput improvement of 4.9× (maximum 6.0×).
This significant increase in DRAM throughput is enabled by
our HetMap which not only supports separate address spaces

for DRAM and PIM but also facilitates MLP-centric mapping
just for the DRAM address space. Because MLP-centric
mapping effectively leverages channel-level parallelism, PIM-
MMU’s DRAM throughput increases linearly with the number
of channels. It is important to note that, when the number of
ranks increases, DRAM throughput does not increase corre-
spondingly because adding more ranks only helps increase
memory capacity but not memory bandwidth.

Ablation study. We summarize our ablation study that
quantifies how much the baseline system’s (denoted “Base”)
DRAM↔PIM data transfer throughput (Figure 15(a)) and
energy-efficiency (Figure 15(b)) can improve by adding PIM-
MMU’s key features in an additive manner: (D) DCE that does
not utilize PIM-MS, (H) HetMap, and (P) PIM-MS.

Starting with the “Base+D” design (i.e., baseline system
utilizing DCE’s DMA capability but without the hardware-
level/fine-grained memory scheduling enabled with PIM-MS),
this design point functions as a proxy for conventional DMA
engines like Intel’s I/OAT [83] or DSA [53]. Interestingly,
“Base+D” actually incurs a degradation in data transfer
throughput for 7 out of the 10 experiments we conduct in Fig-
ure 15(a). Careful analysis of such phenomenon reveals that,
compared to “Base+D” (i.e., the vanilla DCE that does not
employ HetMap and PIM-MS), the baseline system that does
not utilize DMA actually does a better job in utilizing memory
bandwidth thanks to its AVX-512 based wide vector read/write
requests which are aggressively issued concurrently using the
out-of-order execution cores. With the addition of HetMap, the
“Base+D+H” design point is able to significantly improve the
DRAM read/write throughput (as demonstrated through our
microbenchmark study in Figure 14), but the improvement in
end-to-end DRAM↔PIM performance is still marginal. This
is because the performance of “Base+D+H” gets bottlenecked
on the low PIM read/write throughput as it is still based on a
software-level/coarse-grained data transfer, throttling the level
of MLP it can exploit. Once PIM-MS is employed, however,
the “Base+D+H+P” design (i.e., PIM-MMU) fully unlocks
the PIM read/write throughput and significantly improves the
performance of DRAM↔PIM transfers.

When it comes to energy-efficiency, the energy consumed
by the processor-side components dominates the system-wide
energy consumption (Figure 15(b)). Consequently, the over-
all energy-efficiency is determined by how long it takes to
finalize the DRAM↔PIM data transfer operations. Because
both “Base+D” and “Base+D+H” experience longer data trans-
fer time, these two data points suffer from higher energy
consumption than “Base”. In contrast, with all three of our
proposals in place (“Base+D+H+P”), PIM-MMU can signif-
icantly reduce data transfer latency which directly translates
into lower energy consumption, achieving an average 3.3×
(max 3.8×) and 4.9× (max 6.9×) higher energy-efficiency
for DRAM→PIM and PIM→DRAM transfers, respectively.

B. Real-World PIM Benchmarks

Figure 16 shows the normalized execution time of 16
memory-intensive PIM workloads from PrIM [43]. As shown,
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Fig. 16: Normalized end-to-end execution time of PIM benchmarks. PIM kernel execution time is measured using our real UPMEM-PIM
system while DRAM↔PIM data transfer time is properly scaled between baseline vs. PIM-MMU based on our simulation results.

the latency to transfer input/output data across the DRAM and
PIM address space incurs non-trivial performance overhead,
accounting to as much as 99.7% (average 63.7%) of end-
to-end execution time and underscoring the importance of
resolving this system-level bottleneck. PIM-MMU provides an
average 3.3× (max 4.1×) and an average 3.8× (max 5.7×)
reduction in DRAM→PIM and PIM→DRAM data transfer
latency, respectively. The level of end-to-end performance
improvement PIM-MMU provides is obviously dependent on
how critical the DRAM↔PIM data transfer is, e.g., TS shows
marginal performance improvement with our proposed system
since data transfer is not a bottleneck. Nonetheless, PIM-MMU
provides an average 2.2× (max 4.0×) improvement in end-
to-end performance across the entire PrIM benchmark suite,
justifying its adoption in memory bus integrated PIM systems.

C. Implementation Overhead

Implementation of PIM-MS and HetMap is primarily dom-
inated by logic gates, so PIM-MMU’s most significant area
overhead comes from the DCE’s SRAM buffers whose size
is 16 KB and 64 KB for data buffer and address buffer,
respectively. The area overhead of these buffers are evaluated
as 0.85 mm2 using CACTI [85] which amounts to only a
0.37% increase in CPU die size. Given the significant energy-
efficiency improvement PIM-MMU provides, we believe such
implementation overhead is reasonable.

VII. RELATED WORK

Data movement support. To alleviate CPU’s burden during
data movement operations (e.g., memcpy), there exists a
variety of DMA engines. These include Intel’s I/OAT [83],
[108], [109], [116] and DSA [53], [69], along with AMD’s



PTDMA [21]. Kuper et al. [69], for instance, highlights the
efficiency of Intel’s DSA in offloading DRAM↔DRAM data
transfers. Additionally, NVIDIA’s H100 GPU [18] introduced
a memory copy engine called Tensor Memory Accelerator
which efficiently transfers data between off-chip DRAM and
on-chip scratchpad. In general, the concept of offloading a
data copy operation to a dedicated data movement accelerator
is similar between PIM-MMU and these DMA engines. How-
ever, as we quantitatively demonstrated through our ablation
study in Section VI-A (Figure 15, existing DMA engines are
not optimized to exploit the unique characteristics of PIM let
alone its implication from a system’s perspective, failing to
fully reap out MLP to accelerate DRAM↔PIM data transfers.
There also exists several prior work proposing architectures for
bulk data transfer acceleration [11], [30], [45], [100]–[103].
RowClone [101] and SIMDRAM [45], for instance, proposes
an in-DRAM bulk data transfer acceleration scheme where
multiple DRAM rows are concurrently activated as means to
enable fast row to row data copies. These solutions, however,
can only copy data between rows that reside within the same
DRAM chip, rendering PIM-MMU’s contribution orthogonal
these prior work as we focus on accelerating DRAM↔PIM
data transfers. These results highlight the unique contribution
and novelty of PIM-MMU vs. conventional DMA engines or
bulk data transfer architectures.

Characterization of commercial PIM device. Several re-
cent work conducted a detailed characterization of commercial
PIM systems. For instance, [42]–[44] provides a detailed
workload characterization on the UPMEM-PIM system with
another line of research investigating how to exploit the
UPMEM-PIM system to accelerate data-intensive workloads,
e.g., dense/sparse linear algebra, databases, data analytics,
graph processing, bioinformatics, image processing, compres-
sion, simulation, and encryption [6], [7], [14], [20], [25], [41],
[57], [59], [60], [74], [81], [87], [88]. There also exists a
series of studies exploring the hardware/software architectural
support for Samsung’s HBM-PIM architecture [71], [77], as
well as studies on using Samsung’s near-memory processing
based AxDIMM for accelerating recommendation models [64]
and database operations [75]. While these prior work provide
invaluable insights on commercial PIM devices, to the best
of our knowledge, PIM-MMU, which is an extension of our
prior work [76], is the first to uncover the unique system-
level challenges of DRAM↔PIM data transfers in memory
bus integrated PIM systems.

Memory management for PIM systems. Prior work ex-
plored the designs of memory management targeting PIM
systems [5], [8], [9], [16], [23], [34], [46], [49], [50], [112].
Hall et al. [46] described memory management requirements
associated with virtual memory, specifically for the Data Inten-
Sive Architecture (DIVA) [27]. Azarkhish et al. [5] presented
a zero-copy pointer passing mechanism to allow low overhead
data sharing between the host and PIM with virtual memory
support. Zhang et al. [112] presented an IOMMU design that
efficiently handles massive memory requests while supporting
virtual memory for PIM. While these works present memory

management schemes for PIM-enabled systems, they mainly
focus on aspects related to virtual memory, distinguishing
PIM-MMU’s contribution from them.

Memory mapping. There also exists several prior work
exploring efficient memory mapping architectures [4], [12],
[26], [31], [61], [62], [80], [82], [84], [111], [115]. Ghasem-
pour et al. [31] employed multiple DRAM address mapping
functions, dynamically choosing the optimal address mapping
function at runtime based on the target workload’s unique
memory access pattern for improved DRAM performance.
Zhang et al. [111] proposed user-program behavior-aware
memory mapping, which can efficiently exploit channel-level
parallelism. Meswani et al. [84] proposed hardware/software
co-designed memory management for die-stacked DRAM. Li
et al. [80] introduced a hybrid memory management approach
that quantitatively assesses the performance gains of migrating
a page between various memory types within a hybrid memory
system. While these prior work bears some similarity with
PIM-MMU’s HetMap architecture, the unique aspect of PIM-
MMU lies in demonstrating the importance of synergistically
combining DCE, PIM-MS, and HetMap to fully unlock per-
formance, rendering our contribution unique.

VIII. CONCLUSION

Current PIM-integrated systems suffer from high perfor-
mance overheads during DRAM↔PIM data transfers. We
propose PIM-MMU, a hardware/software co-design that en-
ables energy-efficient data transfers in memory bus integrated
PIM. Compared to baseline, PIM-MMU incurs negligible
implementation overheads while providing energy-efficiency
improvements in DRAM↔PIM data transfers, leading to an
end-to-end 2.2× speedup for real-world PIM workloads.
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[42] J. Gómez-Luna, I. El Hajj, I. Fernandez, C. Giannoula, G. F. Oliveira,
and O. Mutlu, “Benchmarking Memory-Centric Computing Systems:
Analysis of Real Processing-In-Memory Hardware,” in Proceedings
of the International Green and Sustainable Computing Conference
(IGSC), 2021.
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