
Apple Intelligence Foundation
Language Models

Apple

We present foundation language models developed to power Apple Intel-
ligence features, including a ∼3 billion parameter model designed to run
efficiently on devices and a large server-based language model designed
for Private Cloud Compute [Apple, 2024b]. These models are designed to
perform a wide range of tasks efficiently, accurately, and responsibly. This
report describes the model architecture, the data used to train the model,
the training process, how the models are optimized for inference, and the
evaluation results. We highlight our focus on Responsible AI and how the
principles are applied throughout the model development.

1 Introduction

At the 2024 Worldwide Developers Conference, we introduced Apple Intelli-
gence, a personal intelligence system integrated deeply into iOS 18, iPadOS
18, and macOS Sequoia.

Apple Intelligence consists of multiple highly-capable generative models
that are fast, efficient, specialized for our users’ everyday tasks, and can
adapt on the fly for their current activity. The foundation models built into
Apple Intelligence have been fine-tuned for user experiences such as writing
and refining text, prioritizing and summarizing notifications, creating playful
images for conversations with family and friends, and taking in-app actions to
simplify interactions across apps.
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Figure 1: Modeling overview for the Apple foundation models.

In this report we will detail how two of these models—AFM-on-device
(AFM stands for Apple Foundation Model), a ∼3 billion parameter language
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model, and AFM-server, a larger server-based language model—have been
built and adapted to perform specialized tasks efficiently, accurately, and
responsibly (Figure 1). These two foundation models are part of a larger
family of generative models created by Apple to support users and developers;
this includes a coding model (based on an AFM language model) to build
intelligence into Xcode, as well as a diffusion model to help users express
themselves visually, for example, in the Messages app.

Apple Intelligence is designed with Apple’s core values at every step and
built on a foundation of industry-lead privacy protection. Additionally, we
have created Responsible AI principles to guide how we develop AI tools, as
well as the models that underpin them:

1. Empower users with intelligent tools: We identify areas where AI
can be used responsibly to create tools for addressing specific user needs.
We respect how our users choose to use these tools to accomplish their
goals.

2. Represent our users: We build deeply personal products with the
goal of representing users around the globe authentically. We work
continuously to avoid perpetuating stereotypes and systemic biases across
our AI tools and models.

3. Design with care: We take precautions at every stage of our process,
including design, model training, feature development, and quality eval-
uation to identify how our AI tools may be misused or lead to potential
harm. We will continuously and proactively improve our AI tools with
the help of user feedback.

4. Protect privacy: We protect our users’ privacy with powerful on-
device processing and groundbreaking infrastructure like Private Cloud
Compute. We do not use our users’ private personal data or user
interactions when training our foundation models.

These principles are reflected at every stage of the architecture that enables
Apple Intelligence and connects features and tools with specialized models.

In the remainder of this report, we provide details on decisions such as:
how we develop models that are highly capable, fast, and power-efficient; how
we approach training these models; how our adapters are fine-tuned for specific
user needs; and how we evaluate model performance for both helpfulness and
unintended harm.

2 Architecture

The AFM base models are dense decoder-only models that build on the
Transformer architecture [Vaswani et al., 2017], with the following design
choices:

• A shared input/output embedding matrix [Press and Wolf, 2016] to
reduce memory usage for parameters.

2



• Pre-Normalization [Nguyen and Salazar, 2019] with RMSNorm [Zhang
and Sennrich, 2019] for training stability.

• Query/key normalization [Wortsman et al., 2023] to improve training
stability.

• Grouped-query attention (GQA) [Ainslie et al., 2023] with 8 key-value
heads to reduce the KV-cache memory footprint.

• The SwiGLU activation [Shazeer, 2020] for higher efficiency.

• RoPE [Su et al., 2024] positional embeddings with the base frequency
set to 500k for long-context support.

Table 1 provides some details about AFM-on-device dimensions.

Model dimension 3072

Head dimension 128

Num query heads 24

Num key/value heads 8

Num layers 26

Num non-embedding params (B) 2.58

Num embedding params (B) 0.15

Table 1: AFM-on-device dimensions.

3 Pre-training

Our AFM pre-training process plays a critical role in developing highly capable
language models to power a host of Apple Intelligence features that can help
and support users. We focus on efficiency and data quality at every step in
order to pre-train for a high-quality end-to-end user experience with efficient
and low-latency models.

3.1 Data

The AFM pre-training dataset consists of a diverse and high quality data
mixture. This includes data we have licensed from publishers, curated publicly-
available or open-sourced datasets, and publicly available information crawled
by our web-crawler, Applebot [Apple, 2024a]. We respect the right of webpages
to opt out of being crawled by Applebot, using standard robots.txt directives.

Given our focus on protecting user privacy, we note that no private Apple
user data is included in the data mixture. Additionally, extensive efforts have
been made to exclude profanity, unsafe material, and personally identifiable
information from publicly available data (see Section 7 for more details).
Rigorous decontamination is also performed against many common evaluation
benchmarks.
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We find that data quality, much more so than quantity, is the key deter-
mining factor of downstream model performance. In the following, we provide
more details about key components of the data mixture.

3.1.1 Web pages

We crawl publicly available information using our web crawler, Applebot [Apple,
2024a], and respect the rights of web publishers to opt out of Applebot using
standard robots.txt directives. Plus, we take steps to exclude pages containing
profanity and apply filters to remove certain categories of personally identifiable
information (PII). The remaining documents are then processed by a pipeline
which performs quality filtering and plain-text extraction, more specifically:

1. Body extraction is performed using a combination of Safari’s reader
mode and the Boilerpipe [Kohlschütter et al., 2010] algorithm.

2. Safety and profanity filtering, using heuristics and model-based classifiers.

3. Global fuzzy de-duplication using locality-sensitive n-gram hashing.

4. Extensive quality filtering using heuristics and model-based classifiers [Kong
et al., 2024; Li et al., 2024a].

5. Decontamination against 811 common pre-training benchmarks, filtering
entire documents upon 4-13 gram collisions with any of the benchmark
datasets, unless the collision-count for a given n-gram reaches a “common-
usage" threshold of 1000.

3.1.2 Licensed datasets

We go to lengths to identify and license a limited amount of high-quality
data from publishers. These licensed datasets provide a natural source of
diverse and high quality long-context data, so we include them as part of
the data mixture for the continued and context-lengthening stages of pre-
training (see Section 3.2.2 and 3.2.3 for more details). We decontaminate
sections of publisher licensed data the same way we decontaminate web pages
(Section 3.1.1).

3.1.3 Code

Code data is obtained from license-filtered1 open source repositories on GitHub.
The bulk of the code data covers 14 common programming languages, including:
Swift, Python, C, Objective-C, C++, JavaScript, Java, and Go. The data is
de-duplicated, further filtered for PII and quality, and decontaminated in the
same fashion as in Section 3.1.1.

1Using MIT, Apache, BSD, CC0, CC-BY, Unlicensed, ISC, and Artistic Licenses.
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3.1.4 Math

We integrate two categories of high-quality data sourced from the web. The
first category is a Math Q&A dataset, comprising 3 billion tokens from 20
web domains rich in math content. We extract the questions and answers by
identifying relevant tags from HTML pages. The second category is a collection
of 14 billion tokens from web pages such as math forums, blogs, tutorials,
and seminars. To filter these web pages, we used a specialized pipeline that
includes a math tag filter with a collection of 40 strings to identify mathematical
templates, a math symbol filter with a collection of 350 Unicode and LaTeX
symbols to identify math content, a quality filter powered by a language model
classifier specifically designed for math [Kong et al., 2024], and a domain
filter that processes all web pages from domains manually labeled by humans.
We applied these filters, followed by deduplication, decontamination, and PII
removal to produce the final dataset.

3.1.5 Public datasets

We evaluated and selected a number of high-quality publicly-available datasets
with licenses that permit use for training language models. Then, we filtered
the datasets to remove personally identifiable information before including
them in the pre-training mixture.

3.1.6 Tokenizer

We use a byte-pair encoding (BPE) tokenizer, following the implementation
from SentencePiece. All numbers are split into individual digits and we use
byte-fallback to decompose unknown UTF-8 characters into byte tokens. We
do not enable Unicode normalization. The total vocabulary size is 100k and
49k tokens for AFM-server and AFM-on-device, respectively.

3.2 Recipe

We break AFM pre-training into three distinct stages: 1. core which consumes
most of the compute budget, 2. continued, where we down-weight the lower-
quality bulk web-crawl data, favoring a higher code and math weight instead
combined with inclusion of the licensed data described in Section 3.1.2, 3.
context-lengthening which is similar to another continued pre-training stage,
but conducted at longer sequence length and with synthetic long-context data
included in the mixture.

Details about model quality after each of the three pre-training stages
(alongside additional metrics for AFM derived from our internal benchmark
implementations) are in Appendix C, and Appendix D examines AFM-server’s
long-context capabilities.

All three stages use decoupled weight decay [Loshchilov and Hutter, 2019]
for regularization, as well as a simplified version of µParam [Yang et al., 2022],
similar to what is described as µParam (simple) in [Wortsman et al., 2023].
Thus far we have not found more sophisticated parameter norm controls to be
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necessary at these scales. All stages maintain sharded model and optimizer
states in float32, casting to bfloat16 for the forward and backward passes
for efficiency.

3.2.1 Core pre-training

AFM-server core training is conducted from scratch, while AFM-on-device is
distilled and pruned from a larger model.

AFM-server: We train AFM-server from scratch for 6.3T tokens on 8192
TPUv4 chips, using a sequence length of 4096 and a batch-size of 4096 sequences.
The batch size was determined using a scaling law fit to model size and compute
budget, however we find that downstream results are relatively insensitive to a
fairly wide range of batch sizes, and expect that any value between 0.5× and
2× the predicted batch size would have yielded similar results (the predicted
optimum was in fact ∼3072, but 4096 allowed for better chip utilization). We
perform a learning rate sweep using a proxy model with a model dimension of
768, finding that the optimum learning rate spans 0.01-0.02, so we choose 0.01
to be conservative. Linear layers will have an effective learning rate scaled by
∼0.1 due to the use of µParam (simple).2

We use a tuned decoupled weight decay of 3.16e−4, finding that it works
well across all tested model sizes and compute budgets. The learning rate
schedule includes a linear warm-up for 5000 steps, followed by cosine decay to
0.005 of the peak over the remainder of training. For further details on the
optimizer, see Section 3.2.4. Appendix A compares the AFM core pre-training
recipe to a more typical configuration.

AFM-on-device: For the on-device model, we found that knowledge distilla-
tion [Hinton et al., 2015] and structural pruning are effective ways to improve
model performance and training efficiency. These two methods are comple-
mentary to each other and work in different ways. More specifically, before
training AFM-on-device, we initialize it from a pruned 6.4B model (trained
from scratch using the same recipe as AFM-server), using pruning masks that
are learned through a method similar to what is described in [Wang et al.,
2020; Xia et al., 2023]. The key differences are: (1) we only prune the hidden
dimension in the feed-forward layers; (2) we use Soft-Top-K masking [Lei et al.,
2023] instead of HardConcrete masking [Louizos et al., 2018]; (3) we employ the
same pre-training data mixture as the core phase to learn the mask, training
for 188B tokens. Then, during the core pre-training of AFM-on-device, a dis-
tillation loss is used by replacing the target labels with a convex combination
of the true labels and the teacher model’s top-1 predictions, (with 0.9 weight
assigned to the teacher’s labels), training for a full 6.3T tokens. We observe
that initializing from a pruned model improves both data efficiency and the

2In scaling law experiments we find that µParam (simple) stabilizes the optimal learning
rate as model size increases, although extrapolating to very significantly deeper and/or
larger models does exhibit a slight left-shift beyond what is accounted for.
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final benchmark results by 0-2%, whilst adding distillation boosts MMLU and
GSM8K by about 5% and 3% respectively. More detailed ablation results can
be found in Appendix B. All training hyper-parameters except for batch-size
are kept the same as AFM-server.

3.2.2 Continued pre-training

For both models we perform continued pre-training at a sequence length of
8192, with another 1T tokens from a mixture that upweights math and code,
and down-weights the bulk web-crawl. We also include the licensed data
described in Section 3.1.2. We use a peak learning rate of 3e−4 and decoupled
weight decay of 1e−5, and 1000 warm-up steps with a final learning rate decay
to 0.001 of peak, differently to core pre-training. Other settings (batch size,
etc) are carried over. We did not find a distillation loss to be helpful here for
AFM-on-device, unlike in core pre-training, so the recipe is identical to that
used for AFM-server.

3.2.3 Context lengthening

Finally, we conduct a further 100B tokens of continued pre-training at a
sequence length of 32768 tokens, using the data mixture from the continued
pre-training stage, augmented with synthetic long-context Q&A data. We
also increase the RoPE base frequency from 500k to 6315089, following the
scaling laws described in [Liu et al., 2024], with the expectation that this
will allow for better short-to-long generalization—which is desirable given
that the majority of our pre-training data is comprised of documents that
are significantly shorter than 32k tokens long. The recipe is similar to that
used for continued pre-training. We examine the long-context performance of
AFM-server in Appendix D.

3.2.4 Optimizer

We choose to use a variant of RMSProp [Hinton, 2012] with momentum for
AFM pre-training. In particular, we divide the raw gradient by the square-root
of a bias-corrected exponential moving average of the squared gradient to
produce an instantaneous update, which is clipped to a maximum norm of 1.0
per parameter block, before then further smoothing this estimate over steps
with an exponential moving average without bias-correction to produce the
net update. Unless otherwise noted, the smoothing constants for both the
squared gradient (β2) and the update (β1) are set to 0.95. A small constant
ϵ = 1e−30 is added to the instantaneous squared gradient prior to smoothing,
for numerical stability.

The smoothed updates are scaled by the learning rate, weight-decay is added,
and then scheduled decay is applied to form the final weight delta. As an
additional guard for stability, prior to the optimizer we clip the global gradient
norm to 1.0. For a recipe ablation against a more typical configuration, see
Appendix A.
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3.3 Training infrastructure

The AFM models are pre-trained on v4 and v5p Cloud TPU clusters with the
AXLearn framework [Apple, 2023], a JAX [Bradbury et al., 2018] based deep
learning library designed for the public cloud. Training is conducted using a
combination of tensor, fully-sharded-data-parallel, and sequence parallelism,
allowing training to scale to a large number of model parameters and sequence
lengths at high utilization. This system allows us to train the AFM models
efficiently and scalably, including AFM-on-device, AFM-server, and larger
models.

AFM-server was trained on 8192 TPUv4 chips provisioned as 8 × 1024
chip slices, where slices are connected together by the data-center network
(DCN) [Chowdhery et al., 2022]. Only data-parallelism crosses the slice
boundary, other types of state sharding are within-slice only as the within-slice
interconnect bandwidth is orders of magnitude higher than the DCN. The
sustained model-flop-utilization (MFU) for this training run was approximately
52%. AFM-on-device was trained on one slice of 2048 TPUv5p chips.

4 Post-Training

While Apple Intelligence features are powered through adapters on top of
the base model (see Section 5 for a deep-dive on the adapter architecture),
empirically we found that improving the general-purpose post-training lifts
the performance of all features, as the models have stronger capabilities on
instruction following, reasoning, and writing.

We conduct extensive research in post-training methods to instill general-
purpose instruction following and conversation capabilities to the pre-trained
AFM models. Our goal is to ensure these model capabilities are aligned with
Apple’s core values and principles, including our commitment to protecting
user privacy, and our Responsible AI principles. Our post-training efforts
include a series of data collection and generation, instruction tuning, and
alignment innovations. Our post-training process contains two stages: su-
pervised fine-tuning (SFT) and reinforcement learning from human feedback
(RLHF). We present two new post-training algorithms: (1) a rejection sampling
fine-tuning algorithm with teacher committee (iTeC), and (2) a reinforcement
learning from human feedback (RLHF) algorithm with mirror descent policy
optimization and a leave-one-out advantage estimator (MDLOO) that are used
on our reinforcement learning iterations and lead to significant model quality
improvements.

4.1 Data

We use a hybrid data strategy in our post-training pipeline, which consists of
both human annotated and synthetic data. Throughout our data collection and
experiment process, we have found data quality to be the key to model success
and thus have conducted extensive data curation and filtering procedures.
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4.1.1 Human annotations

Demonstration data To fuel the instruction fine-tuning of AFM, we collect
high-quality human annotated demonstration datasets from various sources.
This dialogue-style data consists of both system-level and task-level instructions
(a.k.a. prompts), as well as their corresponding responses. Similar to [Zhou
et al., 2024], we observe quality to weigh more importantly than quantity in
our experiments. As a result, we focus on key data quality criteria including
helpfulness, harmlessness, presentation, and response accuracy, in addition
to targeting a diverse task distribution covering Apple Intelligence features.
To protect user privacy, we take steps to verify no personally identifiable
information is present in our data, and we do not include any personal data
stored by users with Apple.

Human preference feedback To iteratively improve AFM’s capabilities, we
further collect human feedback for reinforcement learning. In particular, we
instruct human annotators to compare and rank two model responses for the
same prompt to collect side-by-side preference labels. In addition, we also
use single-side questions to guide this process. These questions inform raters
to grade the model response quality of various aspects including instruction
following, safety, factuality, and presentation, and we also retain these labels
for model training. We emphasize Apple values and standards in the process.
Similar to demonstration data, we find data quality to be crucial for feedback
data, and thus we iterate data and model qualities jointly to improve them in
a unified flywheel.

4.1.2 Synthetic data

In addition to human annotations, we delve into enhancing data quality and
diversity through synthetic data generation. Our findings suggest that when
guided by our robust reward models, AFMs are capable of generating high
quality responses and for some specific domains, these responses are found to
be on par with, or even superior to, human annotations. Therefore, we extend
our prompt set to increase the diversity and find that those generated responses
can benefit AFMs themselves. In the following, we discuss three domains
where we generate synthetic data for AFM post-training: mathematics, tool
use, and coding.

Mathematics In the field of mathematics, the wide-ranging subjects and
difficulty level make it exceptionally resource-intensive for collecting human
demonstrations, since it requires expert knowledge from the human writers. It
also becomes impractical to solely rely on human-written content as the model
continuously improves. As a consequence, exploring the potential of synthetic
data becomes essential to effectively address the challenges.

The creation of synthetic data for mathematics involves two primary
stages: generating synthetic math problems and producing their corresponding
solutions. For math problem synthesis, we employ several “evolution" strategies
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where a seed set of prompts are transformed into a much larger set of diverse
prompts:

Problem rephrase and reversion. Following the approach in [Yu
et al., 2023], we prompt AFM to rephrase seed math questions, and
curate reverse questions to derive a specific number in a raw problem
statement when provided with the final answer.

Problem evolution. Inspired by the instruction evolving technique [Xu
et al., 2023], given a seed problem set Dseed we prompt AFM to generate
two distinct sets of math problems, i.e. F (Dseed)

depth−−−→ Ddepth, and

F (Dseed)
breadth−−−−−→ Dbreadth. The in-depth evolution enhances instructions

by adding complexities while the in-breadth evolution improves the topic
coverage. For both Dbreadth and Ddepth, we first perform de-duplication
with an embedding model, and subsequently prompt LLMs to ensure the
coherence and solvability of the math problems. In addition, for Ddepth
a difficulty level is assigned and we only select math problems that score
above a specified threshold.

With an augmented set of math questions, we then prompt AFM to
synthesize N responses with chain-of-thought per question. If the initial seed
data has ground truth, they can be used as an “outcome reward signal” to filter
synthesized answers. For problems that require less reasoning steps, we observe
that a correct final answer often gets associated with correct intermediate
steps. If direct answer checking is unsuccessful or ground truth is unavailable,
we instead assess the response correctness by querying an LLM judge. We find
that the filtered answers, when fed into the training data, boost our models’
math capabilities by a large margin.

Tool use We develop tool-use capabilities such as function call, code inter-
preter, and browsing through a mixture of synthetic and human data. The
model capabilities are first bootstrapped with synthetic data, which focuses
on single-tool use cases. We then collect human annotations to improve model
capabilities that involve multi-tool and multi-step scenarios. We further aug-
ment the human curated function call data by mixing the oracle tool with
other similar tools to increase the difficulty of tool selection. In addition, we
synthesize parallel function call from human curated function call data to
enable the new capability and tool intent detection data based on human
curated function call and general SFT data to mitigate tool call over-triggering
issues.

Coding The generation of a synthetic coding dataset involves a self-instruct
method with rejection sampling. This approach enables the model to learn
and generate data autonomously. Starting with 71 different programming
topics as the seeds, the model is prompted to generate an initial pool of coding
interview-like questions. For each question, the model generates a set of unit
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tests and a number of potential solutions. We then use an execution-based
rejection sampling method to select the best solution. This involves compiling
each potential solution with every unit test and executing them. The solution
with the highest number of successful executions is chosen. This results in a
collection of (question, test cases, solution) triplets. At the end, we validate
the quality of the dataset by filtering the triplets using the number of passed
unit tests, resulting in 12K high quality triplets used in the SFT.

4.2 Supervised fine-tuning (SFT)

It has been shown [Chung et al., 2024] that scaling multi-task instruction
tuning dramatically enhances model performance on a wide variety of tasks.
Similarly, we attempt to scale supervised fine-tuning data to achieve a strong
base model for subsequent alignment. During SFT, we collect and train models
on demonstration data of a given prompt3. We carefully select and combine
both human data and synthetic data to form a high quality mixture that covers
various natural language use cases.

Data selection We establish a series of quality guards of the data before
onboarding them for model training, including ratings from in-house human
labelers, automatic model-based filtering techniques, and deduplication with
text embeddings. We also scale up the mixture size by a variety of synthetic
data generation methods, as described in Section 4.1.2, and rejection sampling
as described in Section 4.3.2.

Tuning the mixture ratio In order to tune the mixture weight, we treat it as
an optimization problem. Specifically, given a set of weights (w1, w2, ..., wn)
where wi represents the ratio of a specific component in the mixture, we train
a model with wi → wi ± ∆wi and evaluate the quality change on a set of
benchmarks. We find that extensively running such experiments can effectively
identify the best mixture and remove the least impactful data components.

Training hyperparameters The model is trained with a constant learning
rate 5e−6 for AFM-server and 2e−5 for AFM-device models, as well as a drop
out rate 0.1. Since the evaluation metrics fluctuate across different checkpoints,
we run checkpoint selection based on automatic evaluation benchmarks and
best-of-N selection with reward models to test the headroom for RL.

4.3 Reinforcement learning from human feedback (RLHF)

We further use reinforcement learning with collected human preference data
to improve model performance and quality. This involves training a robust
reward model and applying it in two algorithms of iTeC and MDLOO that we
discuss below. We describe more details of our RLHF pipeline in Appendix E.

3A prompt may consist of the most recent user instruction as well as all previous user-
model-system interactions.
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4.3.1 Reward modeling

We train reward models using the human preference data collected with the
method in Section 4.1.1. Each human preference data item contains one
prompt and two responses along with human labels including:

• The preferred response between the two and the preference level, i.e.,
whether the preferred response is significantly better, better, slightly
better, or negligibly better than the rejected response.

• The single-sided grading of each response, measuring the instruction
following property, the conciseness, truthfulness, and harmlessness of
each of the responses.

Our reward model training follows the standard practice of reward modeling
in RLHF with two main innovations:

• We design a soft label loss function that takes the level of human prefer-
ence into account.

• We incorporate single-sided gradings as regularization terms in reward
modeling.

We employ the commonly used Bradley-Terry-Luce (BTL) model [Bradley
and Terry, 1952] for reward modeling in RLHF. In this model, the probability
that a human annotator prefers one response over another is modeled as the
sigmoid function of the difference of the rewards. Our soft label loss function
encourages that this probability is high when the preference level is high,
e.g., when one response is significantly better than the other, and vice versa.
We note that this is different from the margin-based loss function in Llama
2 [Touvron et al., 2023], which also leverages the preference level. Empirically,
we find that our method works better than the margin-based loss function.
Moreover, we also find that using the single-sided gradings as regularization
terms can effectively improve the accuracy of the reward model. More details
of our reward modeling techniques can be found in Section E.1.

4.3.2 Iterative teaching committee (iTeC)

To fully unlock the ability of our model with multiple rounds of RLHF, we
propose a novel iterative RLHF framework which effectively combines various
preference optimization algorithms, including rejection sampling (RS), Direct
Preference Optimization (DPO) [Rafailov et al., 2024] and its variants such as
IPO [Azar et al., 2024], and online reinforcement learning (RL). This enables
us to bring the benefit of RLHF to AFM models across all sizes and improve
their alignment at the same time.

Iterative committee One of the most important lessons we learned from
developing AFM RLHF is to refresh online human preference data collection
using a diverse set of the best performing models. Specifically, for each batch
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of human preference data collection, we set up a collection of latest promising
models trained from SFT, RS, DPO/IPO, and RL, as well as best models
from the previous iterations, which we refer to as “model committee”. We
collect pairwise human preference on responses sampled from the latest model
committee.

After acquiring each batch of human preference data, we refresh our reward
model, and further train a new set of models using the collection of preference
optimization algorithms. We then continue the next round of iterative RLHF
data collection with a new model committee.

Committee distillation We further run rejection sampling (distillation) from
the model committee with the latest reward model as a reranker. Instead of
reranking at global-level, i.e., picking a single best performing model from the
committee and using it as a teacher model, we rerank model responses at the
prompt-level. Specifically, for each prompt, we sample multiple responses from
each model in the committee, and use the latest reward model to select the
best response for each prompt. This allows us to combine the advantages of
models trained by different preference optimization algorithms. For instance,
we find that algorithms that leverage negative examples, e.g., online RLHF,
DPO, IPO, to be better in improving reasoning skills such as math, while
rejection sampling fine-tuning learns instruction following and writing skills
more effectively.

Scaling up distillation In order to bring the RLHF improvements to AFM
models across all sizes, we scale up distillation from the model committee.
Different from larger models, where carefully iterating data and model quality
matters much more than data quantity, we find smaller models can achieve
tremendous improvement when we scale up the number of prompts for distilla-
tion. Our final AFM-on-device model is trained on more than 1M high quality
responses generated from the model committee.

4.3.3 Online RLHF algorithm: MDLOO

In this section, we introduce our online reinforcement learning algorithm
MDLOO, where we decode responses during model training and apply RL
algorithms to maximize the reward.

We use the commonly adopted RLHF objective that maximizes the KL-
penalized reward function [Ouyang et al., 2022]:

max
θ

Ex∼D,y∼πθ(·|x) [rϕ(x, y)− βDKL (πθ(·|x)∥πref(·|x))] , (1)

where D is the prompt distribution, DKL(·∥·) denotes the Kullback-Leibler
divergence between two distributions, and β is the coefficient that controls the
divergence between the behavior policy πθ and a reference policy πref, which
is typically a model trained by SFT. In our RL training, we use the reward
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function

R(x, y) = rϕ(x, y)− β log
πθ(y|x)
πref(y|x)

, (2)

whose expectation is equivalent to Equation 1. We consider the bandit setting
where the generation of the entire response is considered as one action, and we
do not use the value network (a.k.a. the critic) to obtain the per-token reward
or advantage.

Similar to commonly used RLHF algorithms such as PPO [Schulman et al.,
2017], we use a trust-region based policy iteration algorithm. We made two
main design choices in our online RL algorithm:

• We use the Leave-One-Out (LOO) estimator to estimate the advantage
of a prompt-response pair, similar to a recent work [Ahmadian et al.,
2024].

• We use Mirror Descent Policy Optimization (MDPO) [Tomar et al.,
2020] to optimize the policy, differently from the more commonly used
clipping-based PPO method.

Thus, we name our online RL algorithm Mirror Descent with Leave-One-
Out estimation (MDLOO). More specifically, during the decoding stage of
the algorithm, we decode multiple responses for each prompt, and assign the
advantage of each response to be the difference of the reward of the (prompt,
response) pair and the mean reward of the other responses generated by the
same prompt. Intuitively, this estimator aims to measure how much better a
response is compared to a typical response. Empirically, we find this advantage
estimator crucial for stabilizing the RL algorithm and achieving strong results.
Moreover, we use a KL-regularization-based trust region method, i.e. MDPO,
to control the policy change in each iteration. We find that this algorithm
is more effective than PPO in our setting. More details of our online RLHF
algorithm can be found in Section E.2.

5 Powering Apple Intelligence features

Our foundation models are designed for Apple Intelligence, the personal
intelligence system integrated into supported models of iPhone, iPad, and
Mac. We have built these models to be fast and efficient. And while we have
achieved impressive levels of broad capability in our base model, the actual
relevant measure of its quality is how it performs on specific tasks across our
operating systems.

Here we have found that we can elevate the performance of even small
models to best-in-class performance through task-specific fine-tuning and have
developed an architecture, based on runtime-swappable adapters, to enable the
single foundation model to be specialized for dozens of such tasks. A high-level
overview is presented in Figure 2.
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Figure 2: Architecture of Apple Intelligence with adapters for the language
on-device and server models and the image models. In this report we are only
describing the text models.

5.1 Adapter architecture

Our foundation models are fine-tuned for users’ everyday activities, and can
dynamically specialize themselves on-the-fly for the task at hand. We use
LoRA [Hu et al., 2021] adapters, small neural network modules that can
be plugged into various layers of the base model, to fine-tune our models
for specific tasks. For each task, we adapt all of AFM’s linear projection
matrices in the self-attention layers and the fully connected layers in the
pointwise feedforward networks. By fine-tuning only the adapters, the original
parameters of the base pre-trained model remain unchanged, preserving the
general knowledge of the model while tailoring the adapters to support specific
tasks.

We represent the values of the adapter parameters using 16 bits, and
for the ∼3 billion parameter on-device model, the parameters for a rank
16 adapter typically require 10s of megabytes. The adapter models can be
dynamically loaded, temporarily cached in memory, and swapped—giving our
foundation model the ability to specialize itself on the fly for the task at hand
while efficiently managing memory and guaranteeing the operating system’s
responsiveness.

To facilitate the training of the adapters, we created an efficient infras-
tructure that allows us to rapidly add, retrain, test, and deploy adapters
when the base model or the training data gets updated or new capabilities are
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required. It is worth noting that the adapter parameters are initialized using
the accuracy-recovery adapter introduced in Section 5.2.

5.2 Optimizations

The AFM models are designed to support our users throughout their daily
activities, and both inference latency and power efficiency are important for
the overall user experience. We apply various optimization techniques to
allow AFM to be efficiently deployed on-device and in Private Cloud Compute.
These techniques significantly reduce memory, latency, and power usage while
maintaining the overall model quality.

In order to fit AFM into a constrained memory budget of edge devices and
reduce inference cost, it is critical to apply model quantization techniques
to reduce the effective bits per weight while maintaining the model quality.
Previous works have found that 4-bit quantized models only have marginal
loss of quality (typically measured in pre-training metrics) compared to the
original 32/16-bit float-point versions. Since AFM is expected to support
a diverse set of product features, it is essential that the quantized model
retains capabilities in specific domains critical to these use cases. To achieve
an optimal trade-off between model capacity and inference performance, we
have developed state-of-the-art quantization methods and a framework that
utilizes accuracy-recovery adapters. This allows us to achieve near-lossless
quantization that is on average less than 4 bit-per-weight, and provides flexible
quantization scheme choices.

Methods The model is compressed and quantized, on average under 4-bit-per-
weight, after the post-training stages (details of the quantization scheme will be
discussed later). The quantized model often shows a moderate level of quality
loss. Therefore, instead of directly passing the quantized model to application
teams for feature development, we attach a set of parameter-efficient LoRA
adapters for quality recovery. We make sure that these LoRA adapters training
recipes are consistent with pre-training and post-training processes. Then,
products will fine-tune their own feature-specific LoRA adapters by initializing
the adapter weights from the accuracy-recovery adapters, while keeping the
quantized base model frozen.

It is noteworthy that training accuracy-recovery adapters is sample-efficient
and can be considered as a mini-version of training the base model. During
the pre-training stage of the adapters, we only require approximately 10 billion
tokens (∼ 0.15% of base model training) to fully recover the capacity for
the quantized model. Since application adapters will fine tune from these
accuracy-recovery adapters, they do not incur any additional memory usage
or inference costs. Regarding adapter size, we found that adapter rank of 16
offers the optimal tradeoff between model capacity and inference performance.
However, to provide flexibility for various use cases, we provide a suite of
accuracy-recovery adapters in different ranks {8, 16, 32} for application teams
to select from. In Appendix F, we provide detailed evaluation results across
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unquantized, quantized, and accuracy-recovered models and show that the
recovered models perform much closer to the unquantized version.

Quantization schemes Another benefit brought by accuracy-recovery adapters
is that they allow more flexible choices of quantization schemes. Previously
when quantizing LLMs, people typically group the weights into small blocks,
normalize each block by the corresponding maximal absolute values to filter
out outliers, then apply quantization algorithms in a block basis. While a
larger block size yields lower effective bits per weight and a higher throughput,
the quantization loss would increase. In order to balance this tradeoff, it is
common to set block size to a small value, like 64 or 32. In our experiments, we
found that accuracy-recovery adapters can greatly improve the pareto frontier
in the tradeoff. More errors will be recovered for more aggressive quantization
schemes. As a result, we are able to use a highly-efficient quantization scheme
for AFM without worrying about losing model capacity. Specifically, our AFM-
on-device model running on Apple Neural Engine (ANE) uses palettization:
for projection weights, every 16 columns/rows share the same quantization
constants (i.e., lookup tables) and are quantized using K-means with 16 unique
values (4-bit). The quantization block size can be up to 100k. Besides, since
AFM’s embedding layer is shared between the input and output, it is im-
plemented differently from projection layers on ANE. Hence, we quantize
the embedding using per-channel quantization with 8-bit integers for better
efficiency.

Mixed-precision quantization Residual connections exist in every transformer
block and every layer in AFM. So it is unlikely that all layers have the equal
importance. Following this intuition, we further reduce the memory usage by
pushing some layers to use 2-bit quantization (default is 4-bit). On average,
AFM-on-device can be compressed to only about 3.5 bits per weight (bpw)
without significant quality loss. We choose to use 3.7 bpw in production as it
already meets the memory requirements.

Interactive model analysis We use an interactive model latency and power
analysis tool, Talaria [Hohman et al., 2024], to better guide the bit rate
selection for each operation.

More discussions The usage of quantized model and LoRA adapters look
conceptually similar to QLoRA [Dettmers et al., 2024]. While QLoRA was
designed to save computational resources during fine-tuning, our focus is on
the ability to switch between different LoRA adapters to efficiently support
high performance across various specific use cases. Before feature-specific
finetuning, we first train accuracy-recovery adapters on the same pretraining
and post-training data, which is critical to preserve the model quality. The
accuracy-recovery framework can be combined with different quantization
techniques, like GPTQ [Frantar et al., 2022] and AWQ [Lin et al., 2024], since
it does not depend directly on the quantization method itself. The feature
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adapters described in Section 5 are initialized from these accuracy-recovery
adapters.

5.3 Case study: summarization

We use the AFM-on-device model to power summarization features. We
worked with our design teams to create specifications for summaries of Emails,
Messages, and Notifications.

While AFM-on-device is good at general summarization, we find it difficult
to elicit summaries that strictly conform to the specification. Therefore,
we fine tune a LoRA adapter on top of the quantized AFM-on-device for
summarization. The adapter is initialized from the accuracy-recovery adapter
as described in Section 5.2. We use a data mixture consisting of input payloads
covering Emails, Messages, and Notifications. These payloads include public
dataset, vendor data, and internally generated and submitted examples. All
the data have been approved to use for production. Vendor data and internally
generated data have been anonymized to remove the user information. Given
these payloads, we generated synthetic summaries using AFM-server according
to product’s requirements. These payloads and summaries are used for training.

Synthetic summaries We use AFM-server to generate synthetic summaries.
We apply a series of rule-based filters followed by model based filters. Rule-
based filters are based on heuristics such as length constraints, formatting
constraints, points of view, voice, etc. Model-based filters are used to screen
more challenging problems such as entailment. Our synthetic data pipeline
allows us to efficiently generate a large amount of training data and filter it
out by an order of magnitude to retain high-quality examples for fine tuning.

Prompt injection We find that AFM-on-device is prone to following instruc-
tions or answering questions that are present in the input content instead of
summarizing it. To mitigate this issue, we identify a large set of examples
with such content using heuristics, use AFM-server to generate summaries, as
it does not exhibit similar behavior, and add this synthetic dataset to the fine
tuning data mixture.

6 Evaluation

We evaluate the AFM models on pre-training (Section 6.1), post-training
(Section 6.2), and most importantly, feature-specific (Section 6.3) benchmarks.

6.1 Pre-training evaluation

In this section we present common few-shot pre-training evaluation metrics.
While these benchmarks are useful for tracking our progress on pre-training,
we found that human evaluations on the post-trained models (Section 6.2) and
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feature adapters (Section 6.3) are more closely correlated to end-to-end user
experience.

We evaluate AFM pre-trained models with common open-sourced evaluation
harnesses and benchmarks. Table 2 presents the results of AFM-on-device
and AFM-server on HELM MMLU v1.5.0 [Liang et al., 2023], which tests
5-shot multiple-choice question answering across 57 subjects. Also see Table 3
and Table 4 for the results of AFM-server on a subset of the HuggingFace
OpenLLM leaderboard V1 [Huggingface, 2024] and the HELM-Lite v1.5.0
benchmark suite [Stanford, 2024], respectively. These benchmarks show that
the AFM pretrained models possess strong language and reasoning capabilities
and provide a solid foundation for post-training and feature fine-tuning.

AFM-on-device AFM-server

MMLU (5 shot) 61.4 75.4

Table 2: HELM MMLU-5s [Liang et al., 2023] v1.5.0 evaluation results.

AFM-server

MMLU (5-shot) 75.3
GSM8K (5-shot) 72.4
ARC-c (25-shot) 69.7
HellaSwag (10-shot) 86.9
Winogrande (5-shot) 79.2

Table 3: A subset of Open LLM Leaderboard [Huggingface, 2024] V1 evaluation
results.

6.2 Post-training evaluation

We evaluate post-training models on comprehensive benchmarks and compare
AFM models with various open-source models, as well as GPT-3.5 and GPT-4.1

All results reported in this section are obtained using AFM-on-device and
AFM-server base models without any adapter, in bfloat16 precision. In this
section, we first present human evaluation results that measure the AFMs
general capabilities, and then present results for several specific capabilities
and domains.

1We compared against the following model versions: gpt-3.5-turbo-0125, gpt-4-0125-
preview, Gemini-1.5-Pro-0514, DBRX Instruct, Phi-3-mini-4k-instruct, LLaMA 3 8B Instruct,
LLaMA 3 70B Instruct, Mistral-7B-Instruct-v0.2, Mixtral-8x22B-Instruct-v0.1, Gemma-1.1-
2B, and Gemma-1.1-7B.

19



AFM-server

Narrative QA 77.5
Natural Questions (open) 73.8
Natural Questions (closed) 43.1
Openbook QA 89.6
MMLU 67.2
MATH-CoT 55.4
GSM8K 72.3
LegalBench 67.9
MedQA 64.4
WMT 2014 18.6

Table 4: HELM-Lite v1.5.0 [Stanford, 2024] pre-training evaluation results.
N.B. Many benchmarks (e.g. MMLU) differ significantly from commonly used
settings.

6.2.1 Human evaluation

Human evaluation simulates practical use cases and user feedback, and so
often serves as the gold standard for language model evaluation. Consequently,
we conduct extensive human evaluations both while developing the model
and to evaluate its final form. We collect sets of evaluation prompts to
test the model on different aspects, including both general capabilities and
safety. For each prompt, two model responses are presented to human raters
anonymously for side-by-side comparisons. Depending on the nature of the
evaluation, a detailed guideline containing grading principles and examples
of single-response ratings and side-by-side preference ratings is provided to
human raters to ensure consistent grading standards and evaluation quality.
Each pair of model responses is graded by multiple graders and their ratings
are aggregated for final results. Overall, we find human evaluation to align
better with user experience and provide a better evaluation signal than some
academic benchmarks that use LLMs as graders. In this section, we present the
results for human evaluation on general capabilities, and the safety evaluation
results are provided in Section 7.6.

We collect a comprehensive set of 1393 prompts to evaluate the general
model capabilities. These prompts are diverse across different difficulty levels
and cover major categories including: analytical reasoning, brainstorming,
chatbot, classification, closed question answering, coding, extraction, mathe-
matical reasoning, open question answering, rewriting, safety, summarization,
and writing. To prevent overfitting, when preparing training data, we conduct
decontamination against our evaluation prompts.

In Figure 3, we compare AFM with both open-source models (Phi-3,
Gemma-1.1, Llama-3, Mistral, DBRX-Instruct) and commercial models (GPT-
3.5, and GPT-4). AFM models are preferred by human graders over competitor
models. In particular, AFM-on-device obtains a win rate of 47.7% when
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0% 20% 40% 60% 80% 100%
Fraction of Evaluation Prompts

Llama‑3‑8B

Gemma‑7B

Phi‑3‑mini

Mistral‑7B

Gemma‑2B 63.8% 21.0% 15.2%

43.7% 26.8% 29.5%

29.7% 32.0% 38.3%

50.7% 24.7% 24.6%

47.7% 24.2% 28.1%

AFM‑on‑device versus
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31.7% 33.0% 35.3%

44.9% 29.3% 25.8%
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AFM wins Tie AFM loses

Human Evaluation

Figure 3: Side-by-side evaluation of AFM-on-device and AFM-server against
comparable models. We find that our models are often preferred over competi-
tor models by human graders.

compared to Phi-3-mini despite being 25% smaller in model sizes, and even
outperforms open-source strong baselines Gemma-7B and Mistral-7B that
are more than twice larger in the number of parameters. When compared to
closed-source models, AFM-server achieves competitive performance, scoring a
win rate of more than 50% and a tie rate of 27.4% against GPT-3.5.

6.2.2 Instruction following

Instruction following (IF) is the core capability we desire of language models,
as real-world prompts are often sophisticated and contain complex instructions.
We emphasize the importance of instruction following in both our RLHF data
collection and human evaluation. In this subsection, we evaluate our models’
IF skills using automated benchmarks.

In Figure 4 we evaluate AFM-on-device and AFM-server on the public
IFEval benchmark [Zhou et al., 2023], respectively. This benchmark measures
a language model’s capability to generate responses that precisely follow
instructions in the prompt. The instructions in this benchmark typically
include requirements on the response length, format, content, etc. We find
AFM-on-device and AFM-server to achieve superior performance on both
instruction-level and prompt-level accuracy. In addition, we also benchmark
AFM models on the AlpacaEval 2.0 LC benchmark [Dubois et al., 2024] to

21



measure general instruction-following capability, and results suggest that our
models are highly competitive.

On-Device Server
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Figure 4: Instruction-following capability (measured with IFEval) for AFM
models and relevant comparison models (higher is better). The AlpacaE-
val 2.0 LC results for Mistral 7B, Llama3 8B, Llama3 70B, DBRX-Instruct,
and Mixtral 8x22B are obtained from the AlpacaEval leaderboard [Taori et al.,
2023]. The Arena Hard results for comparison models are from the Arena-
Hard-Auto leaderboard [Li et al., 2024b]. All other results are from our own
evaluations.
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6.2.3 Tool use

In tool use applications, given a user request and a list of potential tools with
descriptions, the model can choose to issue tool calls by providing a structured
output specifying the name and parameter values of the tools to call. We
expect the tool descriptions to follow the OpenAPI specification.4

We evaluate on the public Berkeley Function Calling Leaderboard bench-
marks [Patil et al., 2023] via native support of function calling, using the AST
metrics.

As shown in Figure 5, AFM-server achieves the best overall accuracy,
outperforming Gemini-1.5-Pro-Preview-0514 and GPT-4.
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Figure 5: Berkeley Function Calling Leaderboard Benchmark evaluation
results on Function Calling API, along-side relevant sampled comparisons.
Numbers were collected from the Gorilla leaderboard [Patil et al., 2023].

6.2.4 Writing

Writing is one of the most critical abilities for large language models to have, as
it empowers various downstream use cases such as changing-of-tone, rewriting,
and summarization. However, assessing writing quality is a non-trivial task,
and not well-covered in the above public benchmarks.

We evaluate AFM’s writing ability on our internal summarization and
composition benchmarks, consisting of a variety of writing instructions. Fol-
lowing LLM-as-a-judge [Zheng et al., 2024], we design a grading instruction

4https://github.com/OAI/OpenAPI-Specification
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for each summarization and composition task, and prompt GPT-4 Turbo to
assign a score from 1 to 10 for model responses.5 We note that there are
certain limitations and biases associated with using an LLM as a grader, such
as length bias.

We compare AFM with a few of the most outstanding models, along with
smaller-scale open-source models. As shown in Figure 6, AFM-on-device can
achieve comparable or superior performance when compared to Gemma-7B
and Mistral-7B. AFM-server significantly outperforms DBRX-Instruct and
GPT3.5 and is comparable to GPT4.

On‑Device Server

0 2 4 6 8 10
Benchmark Score

0 2 4 6 8 10
Benchmark Score

AFM‑on‑device

Mistral‑7B

Gemma‑7B

Phi‑3‑mini

Gemma‑2B

9.1

8.9

8.9

8.8

7.6

Summarization

AFM‑server

GPT‑4

Mixtral‑8x22B

DBRX Instruct

GPT‑3.5

9.5

9.5

9.5

9.2

8.6

Summarization

Mistral‑7B

Gemma‑7B

AFM‑on‑device

Phi‑3‑mini

Gemma‑2B

9.0

9.1

9.1

9.0

8.0

Composition

GPT‑4

AFM‑server

Mixtral‑8x22B

DBRX Instruct

GPT‑3.5

9.7

9.6

9.5

9.2

8.9

Composition

Writing Benchmarks

Figure 6: Writing ability on internal summarization and composition bench-
marks (higher is better) for AFM-on-device and AFM-server alongside relevant
sampled comparisons. We find that our models perform better or similar to
related models.

6.2.5 Math

In Figure 7, we compare post-training AFM’s performance on math benchmarks
including GSM8K [Cobbe et al., 2021] and MATH [Hendrycks et al., 2021].
We use 8-shot chain-of-thought (CoT) [Wei et al., 2022] prompt for GSM8K
and 4-shot CoT prompt [Lewkowycz et al., 2022] for MATH. We conduct all
evaluations using an internal automated evaluation pipeline. We see that the
AFM-on-device significantly outperforms Mistral-7B and Gemma-7B, even at
less than half of their sizes.

5Due to the choice of using GPT-4 as judge, the score of GPT-4 Turbo can be overesti-
mated.
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Figure 7: Math benchmarks for AFM-on-device and AFM-server alongside
relevant sampled comparisons. GSM8K is 8-shot and MATH is 4-shot. All
results are collected with an internal automated evaluation pipeline.

6.3 Summarization feature evaluation

The product team specifications for summarizing Emails, Messages, and Noti-
fications necessitated a tailor-made set of guidelines, metrics, and specialized
graders to evaluate summarization quality against various open-source, licensed,
and proprietary datasets.

Datasets. We sampled abundant payloads carefully for each use case. These
evaluation datasets emphasize a diverse set of inputs which our product features
are likely to face in production, and include a stratified mixture of single and
stacked documents of varying content types and lengths. We developed a
pipeline to build evaluation datasets that simulate real user inputs.

Graders. We enlisted a pool of highly-trained, full-time, Apple-employed
human graders with specialized writing and comprehension skills to evaluate
summarization quality. To qualify for grading projects, each grader must pass a
series of eligibility and training steps, which include a required bachelor’s degree
in a writing-related discipline, customized training sessions, and consistently
high performance against internal grading quality benchmarks.

Grading guidelines. During the evaluation task, graders are presented with
a specification for the summary, the original input content, and the output
summary. Graders assess the summary on each the following sub-dimensions
of quality using 3 point scales (“good”, “neutral”, or “poor” ):
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Composition: Evaluates the overall readability of the summary consid-
ering grammar, punctuation, spelling, and brevity.

Comprehensiveness: Evaluates how comprehensive the summary is in
capturing the essential points or calling out any actions/conclusions for
the user.

Groundedness: Evaluates how grounded the summary is with respect to
the original payload. Summaries that are not completely grounded may
contain details that are exaggerated, inferred, inaccurate, or hallucinated.

Following instructions: Evaluates whether the summary meets specific
style and formatting requirements. Requirements are tailored to each
feature and reflect specific product and design expectations.

Harmfulness: Evaluates whether the summary contains content that is
harmful or unsafe according to Apple’s safety taxonomy.

A summary is classified as “poor” if any of the sub-dimensions are “poor”
according to predefined product specifications. Likewise a summary is “good”
only if all sub-dimensions are good. These classifications are used to compute
“Good/Poor Result Ratio” metrics defined as the percentage of good/poor
summaries out of all summaries.

Results. We ask human graders to evaluate the summarization quality of the
AFM-on-device adapter, Phi-3-mini, Llama-3-8B, and Gemma-7B. Figure 8
shows that AFM-on-device-adapter overall outperforms the other models.

7 Responsible AI

7.1 Overview

Apple Intelligence is developed responsibly and designed with care to empower
our users, represent them authentically, and protect their privacy. Of primary
importance to our Responsible AI approach is that we are ultimately delivering
intelligent, well-defined tools that address specific user needs. Having a clear
definition of what a feature is intended to do allows us to better identify any
potential safety gaps.

We have developed a safety taxonomy in order to be comprehensive and
consistent in the design and evaluation of our generative AI-powered features.
This taxonomy builds and extends Apple’s extensive experience in using ar-
tificial intelligence and machine learning to deliver helpful features to users
around the world, and is updated regularly as we develop and test features.
Currently, it consists of 12 primary categories comprised of 51 subcategories,
including “Hate Speech, Stereotypes, and Slurs”, “Discrimination, Marginaliza-
tion, and Exclusion”, “Illegal Activities”, “Adult Sexual Material”, and “Graphic
Violence.”

The taxonomy serves as a structured way to consider potential issues and
risks relative to each specific feature. As new or additional risks are identified,
we develop and revise the associated policies that are contextualized to each
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Figure 8: Ratio of “good” and “poor” responses for three summarization use
cases relative to all responses. Summaries are classified as “good”, “neutral”,
or “poor” along five dimensions. A result is classified as “good” if all of the
dimensions are good (higher is better). A result is classified as “poor” if any of
the dimensions are poor (lower is better). Overall, our AFM-on-device adapter
generates better summaries than comparable models.

individual feature, taking into account the specific needs that it serves, the
content it produces, and the appropriate mitigations. They are developed
with extensive internal and external input from academics, AI ethicists, trust
and safety, and legal experts to better identify and understand the relevant
risks, the potential severity of such risks, and the potential disparate impact
these risks may have on certain groups. These policies guide our work in
data collection, human annotation, model training, guardrails development,
evaluation, and red teaming.

Particularly, the taxonomy is not itself the sole determinant of our policy.
For example, content that may fall within the safety taxonomy is not necessarily
always blocked, as doing so unilaterally may be in conflict with other aspects
of Apple’s Responsible AI development principles, such as “respecting how our
users choose to use these tools to accomplish their goals.” Thus, features that
operate as tools may be more permissive in the kinds of content they operate
over and produce in order to effectively address the user’s intent. On the other
hand, features that may generate content beyond a user’s specified intent may
need to be more constrained. Regardless, we strive for some categories of harm
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to always be treated with special care (such as any content that relates to self
harm) while other categories will always be blocked (such as illegal content).

In addition, our Responsible AI principles are built into every stage of Apple
Foundation Models and Apple Intelligence as well as the safety taxonomy, which
helps us evaluate risks and formulate policies feature by feature. We include
safety-oriented data as part of our fine-tuning of specific adapters tailored by use
case. Furthermore, at the time of inference, we also run guardrail models [Inan
et al., 2023] as pre- and post-processing steps to evaluate potential harm at
both the input and output level. Finally, we have mechanisms in place to
continuously and proactively improve our AI tools with the help of ongoing
user feedback.

7.2 Pre-Training

At the pre-training stage, we take several steps to ensure that the values as
outlined above are upheld. We follow a strict data policy ensuring that no
Apple user data is included, as well as conduct rigorous legal review for each
component in the training corpus. Further, we perform safety filtering to
reduce potentially harmful content, including NSFW content, profanity, spam,
and PII or financial data.

Because pre-training is a step which is shared among various downstream
features, our safety mitigations aim to retain general capabilities that allow us
to iterate on the taxonomy and policy at a per-feature level, without hurting
the helpfulness of these downstream models. We take learnings from prior
work to avoid overly aggressive filtering at the pre-training stage, which has
potential benefits in safety alignment [Touvron et al., 2023]. Intuitively, the
pre-trained model should be aware of content that downstream features and
policies may require it to handle – in some cases with care, or in other cases
operating over such content directly.

7.3 Post-Training

In the post-training phase, we aim to instill a baseline level of alignment with
our Responsible AI principles to avoid necessitating the full complexities of
post-training (such as RLHF) in each downstream model that builds on top of
the foundation model. In doing so, there are two key considerations:

1. We must ensure our models produce output that is helpful to users, while
minimizing potential harm.

2. We must contextualize our safety taxonomy and policies on a feature by
feature basis to deliver the best possible user experience.

To balance helpfulness and harmlessness trade-off, our solution is to treat
safety alignment as one of the many core post-training tasks that are evaluated
and iterated on in tandem, instead of as a separate stage of training. Specifically,
we include adversarial data into our SFT and RLHF training corpora that is
curated according to our policy and values by partnering closely with trusted
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vendors. We also incorporate safety tasks and benchmarks into the automatic
and human evaluations used during model development.

In total, over 10% of the training data are adversarial or related to safety
or sensitive topics, including single and multi-turn safety category annotations,
pairwise and overall preference ratings, and annotator rewrites. This data is
either used directly or as seed data for synthetic data generation, as described
in Section 4.1.2.

We do additional work to achieve appropriate safety behavior for each fea-
ture beyond baseline alignment. A primary way that we do this is by collecting
safety-specific training data and including it when fine-tuning adapters. For in-
stance, in fine-tuning our summarization adapter we sought to improve aspects
such as, improving robustness against malicious questions included within the
content to be summarized, and reducing the likelihood that summaries would
inadvertently amplify harmful or sensitive content to be summarized.

7.4 Guarding against malicious code

Code generation requires special care. Our code benchmarks involve actu-
ally executing the generated code to determine both syntactic and semantic
correctness. Thus, responsible training of code models involves treating all
generated code as unsafe by default – all code is always executed in a fully
locked down environment with no access to the internet or any internal or
external services. Specifically, the locked down environment is managed with
FireCracker [Agache et al., 2020], with a FireCracker jailer at the cluster level.

7.5 Red teaming

Red teaming attempts to elicit safety policy violating responses from models,
or harmful responses for which no policy yet exists. These results inform
both policy development as well as the focus and content of safety evalua-
tion datasets. These in turn can influence design, engineering, and shipping
readiness decisions.

Red teaming is a fundamentally creative endeavor that requires red teamers
to employ combinations of attack vectors to probe known model vulnerabilities,
and try to discover new ones. Attack vectors used when engaging with language
models include jailbreaks/prompt injections, persuasive techniques [Zeng et al.,
2024], and linguistic features known to cause model misbehavior (e.g. slang,
code-switching, emojis, typos).

We employ both manual and automatic red-teaming [Ganguli et al., 2022]
to elicit potentially unknown failure modes of the aligned models. More recent
works [Touvron et al., 2023] suggest that automated processes can potentially
generate even more diverse prompts than humans, previously seen as the “gold”
standard for data collection. These automated processes can include using the
language models themselves to identify gaps, some of which may be unintuitive
or even surprising. Such examples can be used directly as synthetic training
or evaluation data and to inform future data collection efforts.
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A basic human red teaming task schema is as follows: a red teamer is
assigned a safety taxonomy category and attack vector(s). They author an
input to the model, using that attack vector, that is intended to elicit a response
containing content from that category. If the response does not contain the
target content, the red teamer can engage in a fixed number of conversational
turns, after which they provide a final harmfulness rating of the model output
and list the taxonomy categor(ies) in it, if any. To ensure annotation quality,
red teamers also provide an overall confidence score for their ratings.

In addition to red teaming at the base model level, we also red team
specific features. Red teaming projects at the feature level use feature-specific
guidelines with attack vectors informed by the feature’s safety policy and
engineering concerns. These projects can provide in-depth probing of known
risks for that particular feature and also adversarially probe for unknown
vulnerabilities.

Our red teaming projects are run using internal and external crowds. To
ensure responsible data collection, due to the sensitive nature of red teaming
we: 1) make red teaming completely voluntary; 2) impose a strict time limit
on how much each red teamer spends on the tasks per week; 3) provide health
and well-being resources available around the clock; and 4) maintain an open
line of communication with internal red teamers via weekly office hours and a
Slack channel for them to communicate any concerns that arise.

7.6 Evaluation

As mentioned in previous sections, safety is one of the many axes iterated
on during foundation model development, and therefore undergoes the same
automatic and human evaluation cycles during post-training.

Safety evaluation set To reduce noise, cost, and turn-around time during
human evaluations, we must ensure that our safety evaluation sets are clean,
yet challenging and comprehensive. To that end, we filter out “easy" prompts
which consistently yield low harmfulness responses across different versions of
the model, and employ an embedding-based analysis to improve our evaluation
prompt set coverage. Overall, we curate a set of over a thousand adversarial
prompts to test AFM’s performance on harmful content, sensitive topics, and
factuality according to our safety policy.

Safety evaluation results Figure 9 summarizes the violation rates of different
models evaluated by human graders on this safety evaluation set. Lower
is better. Both AFM-on-device and AFM-server are robust to adversarial
prompts, achieving violation rates significantly lower than open-source and
commercial models. In addition, we report side-by-side human preference on
our safety evaluation prompts in Figure 10. AFM models are preferred by
human graders as safe and helpful responses over competitor models.
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Figure 9: Fraction of violating responses for harmful content, sensitive topics,
and factuality (lower is better). Our models are robust when faced with
adversarial prompts.
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Figure 10: Fraction of preferred responses in side-by-side evaluation of Apple’s
foundation model against comparable models on safety prompts. Human
graders found our responses safer and more helpful.

8 Conclusion

In this report we introduced the foundation language models that power
Apple Intelligence features, AFM-on-device and AFM-server. The models are
designed to be fast and run efficiently on iPhone, iPad, and Mac as well as
on Apple silicon servers via Private Cloud Compute. They are trained to
be highly capable in tasks like language understanding, instruction following,
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reasoning, writing, and tool use. We have developed an innovative model
architecture to specialize these models for our users’ most common tasks.
On top of the foundation models, feature-specific adapters are fine-tuned
to provide high-quality user experiences such as summarization of emails,
messages, and notifications. Our models have been created with the purpose
of helping users do everyday activities across their Apple products, grounded
in Apple’s core values, and rooted in our Responsible AI principles at every
stage. These foundation models are at the heart of Apple Intelligence, the
personal intelligence system built by Apple to continue empowering our users
and enriching their lives.
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Appendix

A Core pre-training recipe ablation

We compare our chosen settings for ‘core’ pre-training from Section 3.2.1
(optimizer, scaling-law-predicted batch-size, weight-decay, etc.) to a baseline
based on [Wortsman et al., 2023]. In particular, the baseline uses AdamW with
a standard hyperparameter configuration of β1 = 0.9, β2 = 0.95, ϵ = 1e−15,
and a decoupled weight decay of 1e−4, decaying the learning rate to 0.0001 of
peak, with a batch size of 1024 sequences. Otherwise both recipes are identical.
Training covers 3.1T tokens using the AFM-on-device architecture but with a
different data mixture to that used by the official AFM training runs.

Task Baseline (acc) AFM (acc)

arc_challenge 41.9 44.6
arc_easy 75.6 76.1
hellaswag 54.3 55.0
lambada 69.3 68.9
piqa 78.3 78.4
sciq 94.5 94.7
winogrande 67.3 66.9
triviaqa (1-shot) 40.5 41.0
webqs (1-shot) 20.6 20.6

CoreEN average 60.2 60.7

GSM8K (8-shot CoT) 16.6 18.9
MMLU (5-shot) 45.4 45.5

Table 5: Core pre-training recipe ablation few-shot results. Unless otherwise
noted, we use 0-shot prompts. We note that AFM’s recipe allows for slight
improvements across the majority of tasks, although the difference is typically
very small. The data mixture differs from the official AFM runs.

In Table 5, AFM’s recipe demonstrates a slight improvement over the
baseline. This likely indicates that the most important recipe settings are
already well-enough configured by the baseline for this model size and training
budget.

B Ablations on pruning and distillation

Here we detail the evaluation results of using structural pruning and distillation
separately and show they can be combined together to get the best performance.

Table 6 shows the ablation results of training 3B models using an early
version of our pre-training data mixture. As shown in the table, both pruning
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and distillation methods can outperform a baseline model trained from scratch.
For example, pruning and distillation achieve a MMLU score of 42.9% and
44.9% respectively, whereas a baseline using 50% more steps gets 34.6%. It is
also interesting that pruning achieves a higher score on the CoreEn benchmark,
while distillation is better on MMLU. Finally, when combining these two
methods together, we observe further improvements on MMLU and GSM8k
by a large margin, getting better or on par results compared to the baseline
trained using 5× more computation.

Metric/Method Baseline Prune Distill Both Baseline

Training cost 1.5× 1× 1× 1× 5×

MMLU (5-shot) 34.6 42.9 44.9 49.3 45.4
GSM8K (8-shot CoT) 12.7 13.5 11.0 16.8 16.9
CoreEN Average 59.8 61.0 58.1 59.7 60.3

Table 6: Ablation results of pruning and distillation methods. The training
data is an early version that differs from the official AFM runs.

C Pre-training stage-breakdown evaluations

We present few-shot evaluation results after core, continued, and long-context
pre-training stages, for a subset of evaluation metrics that we find to be
low-variance, diverse, and correlated with downstream evaluation after post-
training. These metrics are derived using an internal harness and set of
benchmark formulations, which are not optimized for absolute performance
(e.g. we do not apply length normalization, and use more difficult test splits
where available—for TriviaQA as one example). They are therefore not suitable
for comparison with other published results.

In Table 7 and 8 we present internal benchmarks after all three stages
of pre-training. As expected, continued pre-training acts to improve math
and particularly code model capabilities, whilst subtly improving a few other
benchmarks. The context-lengthening stage leaves the majority of these
benchmarks on-par, with changes (positive and negative) typically within the
range of what we consider to be evaluation noise.

D Long-context evaluation

Although the focus for this version of AFM was not to support context lengths
longer than 8k, in Table 9 we use the RULER [Hsieh et al., 2024] benchmark to
evaluate AFM-server at 4k to 32k context lengths. We note that the model is
capable of performing perfectly up to a sequence length of ≥ 32k when tested
against straightforward retrieval-like tasks, e.g., needle-in-the-haystack (NIAH).
It is clear, however, that the model performance gradually suffers with an

42



AFM-on-device Core Continued Context lengthened

ARC_C 43.17 47.53 45.39
ARC_E 74.87 78.62 78.37
HellaSwag 54.70 55.50 55.24
LAMBADA 73.51 70.13 69.90
PIQA 77.37 78.67 78.40
SciQ 94.90 95.80 95.70
WinoGrande 65.82 67.32 67.01
TriviaQA (1 shot) 42.46 39.13 38.11
WebQS (1 shot) 19.24 18.06 17.22

CoreEN average 60.67 61.20 60.59

MMLU (5 shot) 57.00 61.35 60.64
GSM8K (8 shot CoT) 27.45 42.53 40.00
MATH (4 shot CoT) 8.31 16.97 15.48
HumanEval-Py pass@1 16.48 27.38 30.84
MultiPLE-Swift pass@1 8.88 19.24 18.06

Table 7: Pre-training evaluation for AFM-on-device with an internal harness.
Unless otherwise noted, we use 0-shot prompts. TriviaQA evaluation is on the
larger and more challenging “Web” split.

increasing context length on RULER, a more complex evaluation benchmark
than NIAH, suggesting that the real context length for AFM-server, for tasks
beyond retrieval, is currently at most 24k.

E Technical details for RLHF

E.1 Reward modeling

The human preference data that we use in reward model training has the
following format:

• x: the prompt;

• yc: the chosen (preferred) response;

• yr: the rejected response;

• ℓ: the level of the human preference;

• zif
c and zif

r : the instruction-following property of the two responses;

• zverb
c and zverb

r : the verbosity of the two responses;

• ztruth
c and ztruth

r : the truthfulness of the two responses;
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AFM-server Core Continued Context lengthened

ARC_C 58.28 58.87 57.94
ARC_E 85.61 85.44 85.06
HellaSwag 64.17 64.53 64.37
LAMBADA 78.38 77.59 77.82
PIQA 82.37 81.99 81.88
SciQ 96.60 97.10 97.00
WinoGrande 80.51 79.16 79.08
TriviaQA (1 shot) 54.33 53.57 53.42
WebQS (1 shot) 29.97 27.66 27.41

CoreEN average 70.02 69.55 69.33

MMLU (5 shot) 74.00 75.24 74.80
GSM8K (8 shot CoT) 75.44 74.83 75.51
MATH (4 shot CoT) 32.24 36.48 35.77
HumanEval-Py 33.23 40.77 39.55
MultiPLE-Swift 30.15 37.70 38.11

Table 8: Pre-training evaluation for AFM-server with an internal harness.
Unless otherwise noted, we use 0-shot prompts. TriviaQA evaluation is on the
larger and more challenging “Web" split.

AFM-server Average acc

Ctx @ 4096 91.7
Ctx @ 8192 87.7
Ctx @ 16384 84.1
Ctx @ 20480 79.1
Ctx @ 24576 75.8
Ctx @ 32768 43.3

Table 9: RULER [Hsieh et al., 2024] average evaluation results, averaged over
13 synthetic long-context tasks using 500 examples per task.

• zharm
c and zharm

r : the harmlessness of the two responses.

In our reward modeling, the preference level ℓ takes 4 possible values, indi-
cating that the chosen response is negligibly better, slightly better, better,
or significantly better than the rejected response. As for the single sided
gradings, each label, e.g., zif

c , takes 3 possible values. For instruction following,
truthfulness, and harmlessness, the 3 values correspond to the cases where the
response has major issue, minor issue, or no issue. For verbosity, the 3 values
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correspond to the cases where the response is too verbose, too short, or just
right.

We use a multi-head architecture for the reward model. More specifically,
we take a decoder-only transformer and obtain the last-layer embedding of
the last non-padding token. We attach one linear and four MLP heads to the
embedding. Denote the model parameters by ϕ and the input prompt-response
pair by (x, y). The linear head outputs the preference reward rϕ(x, y) ∈ R.
The four MLP heads are classification heads representing the instruction-
following, verbosity, truthfulness, and harmlessness property of the response.
We denote the output logits of the 4 classification heads by uif

ϕ, u
verb
ϕ , utruth

ϕ ,
uharm
ϕ , respectively.

Soft label loss. We train the preference reward rϕ(x, y) based on Bradley-
Terry-Luce (BTL) model [Bradley and Terry, 1952]. Recall that in BTL model,
the probability that yc is preferred over yr is modeled as σ(rϕ(x, yc)−rϕ(x, yr)),
where σ is the sigmoid function. Intuitively, this probability should be larger if
the preferred response yc is annotated as significantly better than the rejected
response yr, and smaller if yc is only negligibly better than yr. We incorporate
this information using the preference level ℓ. More specifically, for each
preference level ℓ, we design a target preference probability pℓ. Then we use a
soft label loss as follows:

Lranking(ϕ) =− pℓ log(σ(rϕ(x, yc)− rϕ(x, yr))

− (1− pℓ) log(σ(rϕ(x, yr)− rϕ(x, yc)).
(3)

The target level pℓ is a hyperparameter in our algorithm and should take
larger value if the preference level is higher. In our experiments, we choose
pℓ = 0.95, 0.85, 0.75, 0.65 for significantly better, better, slightly better, and
negligibly better, respectively.

Single-sided grading as regularization. We also leverage the single-sided
gradings as regularization terms in our reward model. The intuition is that
with these gradings as regularization terms, we can learn a better embedding
to capture human preferences. The regularization loss is

Lregu(ϕ) =
∑

grade∈if,verb,truth,harm

(
cross_entropy(ugrade

ϕ (x, yc), z
grade
c )

+ cross_entropy(ugrade
ϕ (x, yr), z

grade
r )

)
.

(4)

Overall, the reward model training loss that we use is

Lranking(ϕ) + λLregu(ϕ). (5)

E.2 Online RL algorithm

In this section, we present more details of our online RLHF algorithm, MDLOO.
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Leave-One-Out (LOO) estimator of the advantage. In each iteration of the
algorithm, we have a data collection stage and a policy updating stage. Let θk
be the model parameter at the beginning of the k-th iteration. We sample a
batch of n prompts from our prompt set, and for each prompt, we sample K
responses according to the policy πθk , and thus collecting a total of nK data
points in each iteration. Let x be a prompt and yi be one of the responses.
Since we consider the bandit setting, by definition, the advantage of (x, yi) is

Ak(x, yi) = R(x, yi)− Ey∼πθk
(·|x)[R(x, y)]. (6)

We use the leave-one-out (LOO) method [Kool et al., 2019] to estimate Ak(x, yi).
Namely, we estimate the mean reward given the prompt x with the other K−1
responses, i.e.,

Âk(x, yi) = R(x, yi)−
1

K − 1

∑
j ̸=i

R(x, yj). (7)

As shown in recent works [Ahmadian et al., 2024], this advantage estimation is
beneficial for RLHF. Empirically, we find that using LOO estimator leads to
more stable training and better results compared to directly using the reward
as the advantage estimation or using the difference between the reward and a
running average baseline [Williams, 1992].

Mirror descent policy optimization (MDPO). Our policy optimization ap-
proach belongs to a widely used class of trust-region policy optimization
algorithms [Schulman et al., 2015]. The basic idea in these algorithms is that
in each policy iteration, we apply a regularization method to prevent the policy
from changing too much in an iteration. The regularization can be achieved
by adding KL regularization [Abbasi-Yadkori et al., 2019; Lazic et al., 2021;
Tomar et al., 2020] and using clipping for the probability ratio such as in
PPO [Schulman et al., 2017]. In this work, we use KL regularization as in
Mirror Descent Policy Optimization (MDPO) [Tomar et al., 2020].

In particular, in the k-th iteration, with the data (prompts along with the
K responses sampled according to πθk for each prompt), we aim to optimize
the following regularized advantage maximization problem:

max
θ

Ψ(θ) := Ex∼D

[
Ey∼πθk

(·|x)[Ak(x, y)]− γDKL(πθ(·|x)||πθk(·|x))
]
. (8)

Note that here the KL regularization term is different from the one in Eq. (1).
The KL regularization in Eq. (1) is between the policy model and the reference
model; whereas the KL regularization term in Eq. (8) is between the policy
model and the policy at the beginning of the k-th iteration. Then we can
obtain the gradient of Ψ(θ) as

∇Ψ(θ) =Ex∼D,y∼πθk
(·|x)

[
πθ(y|x)
πθk(y|x)

Ak(x, y)∇ log πθ(y|x)
]

− γEx∼D [∇DKLπθ(·|x)||πθk(·|x)] .
(9)
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The MDLOO algorithm can be derived by replacing the expectations in Eq. (9)
with the nK samples collected with πθk , and the advantage Ak(x, y) with the
LOO estimator Âk(x, y) in Eq. (7). Empirically, we find that MDLOO works
better than the popular PPO [Schulman et al., 2017] algorithm in our setting.

F Accuracy-recovery adapters ablation

In this section, we present the evaluation results on unquantized, quantized,
and accuracy-recovered models. As shown in Table 10, the quantized models
have huge quality drops in both pre-train and post-train metrics. By using
accuracy-recovery LoRA adapters with only rank 16, Alpaca win rate can be
improved by 7-18%, GMS8K accuracy is boosted by 5-10%. The recovered
models perform much closer to the original unquantized model while achieving
significant reductions on the model size. More interestingly, we observe that
when the quantization scheme becomes more aggressive (from 3.7 to 3.5 bpw),
the adapters also recover more quality back.

BPW Models IFEval Instruction-Level AlpacaEval 2.0 LC GSM8K (8-shot CoT)

16 AFM-on-device 100.0% 100.0% 100.0%

3.5
quantized 98.4% 76.7% 82.2%
Acc.-recovered (rank 16) 98.8% 94.7% 92.1%

3.7
quantized 97.9% 87.3% 91.3%
Acc.-recovered (rank 16) 100.6% 94.8% 96.0%

Table 10: Evaluation results for quantized and accuracy-recovered models.
Numbers are normalized to the unquantized version.
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